
Speedshop Tune: Babylist

@nateberkopec

Prepared with care

@nateberkopec

2024-09-03

Contents�

• Outcome: Measure performance accurately
– Recommendation: Get environments out of service names in Data-

dog.
– Recommendation: Rename transactions terminating in Rack middle-

ware
– Recommendation: Create a stack of a performance dashboard, mon-

itors and SLOs
– Recommendation: Remove Sentry RUM and use Speedcurve or Data-

dog
– Recommendation: Implement a custom “page is loaded” event in

RUM
• Outcome: 99.99% Uptime

– Recommendation: Move to SLA-based queues
– Recommendation: Autoscale Sidekiq based on queue latency
– Recommendation: Break up or iterable-ize your 10 longest running

Sidekiq jobs.
– Recommendation: Merge the Schema Cache PR, aim to cut p95 re-

quest queue time
– Recommendation: Shed load using background job queues, either

automatically or manually
– Recommendation: Set SQL database pool based on thread concur-

rency, controlled by a single, consistent ENV variable
– Recommendation: Move to BigRails connection management for Re-

dis, cleanup what’s stored in which Redis database.
• Outcome: Improve page load time

– Recommendation: Optimize 4 main web transactions.
– Recommendation: Profile allocations in V3::RegItemsController#index
– Recommendation: Profile allocations in V2::RegistryController
– Recommendation: Create a seed or “registry pull” process
– Recommendation: When viewing registry as a guest, fetchReserve-

1

https://github.com/nateberkopec

dRegItems should only fire once and it should not wait on page
readiness.

– Recommendation: Pick a way forward with frontend: SPA or Turbo.
– Recommendation: Reduce JS bundle size

• Outcome: Reduce infrastructure spend by $299,000/year
– Recommendation: Set Sidekiq concurrency to 10 everywhere, CPU

limit to 1, and memory limit to 4GB. ($10k/year)
– Recommendation: Autoscale Puma based on a combination of re-

quest queue latency and utilization/busyness. ($240k/yr)
– Recommendation: Set Puma to 10 workers on 8-core pods with 32

GB requests.
– Recommendation: Downsize the main database to r7g.8xlarge. Move

read replication further down the backlog. (18k/year)
– Recommendation: Reduce memcached to 1 r7g.large node.
($16k/year)

– Recommendation: Slash Redis database sizes ($5k/yr)
– Recommendation: Remove the Sidekiq high-memory deployment by

auditing Sidekiq memory use
– Recommendation: Multithread Puma to remove 15% of your web

fleet. ($2,000/yr)
– Recommendation: Reconfigure the fleet to use m7i.2xlarge.

• Outcome: Reduce build times to less than 10 minutes.
– Recommendation: Consider self-hosting
– Recommendation: Get Journey tests off the critical path
– Recommendation: Keep Cranking That Parallelism, Baby

• Outcome: Successful iterable integration
– Recommendation: Treat this as a microservice, run on its own fleet

of 40 Puma workers, push work to Sidekiq and batch/flush writes.
• Summary

Hello Babylist!

Thanks for having me take a look at your application. I’ve identified several
areas for investment in performance. Some of the things I’ve discussed in this
report are actually just simple configuration changes you can make today that
will save you a lot of money. Others are more long-term projects and skills that
you can improve on over the next six months.

This document is organized at the top level by our desired Outcomes, which
are my goals for your performance improvements over the next six months.
Underneath that are specific Recommendations to achieve those outcomes. Each
Recommendation has an associated cost and benefit, rated subjectively on a 5
point scale.

At the end of the document, I will present again the Outcomes and Recommen-
dations without commentary. This is intended to be a quick reference to help
you turn this document into action and assist during planning your sprints, etc.

2

I hope you enjoy this document and find it a useful guide for the next 6 months
of performance work on your application.

Nate Berkopec The Speedshop

Outcome: Measure performance accurately
When it comes to measurement, I’m a stickler for methodology. Measuring the
wrong thing is often worse than measuring nothing at all: it can lead to wasted
work being done to fix problems that don’t exist, or work being misprioritized
based on a red herring of data. In addition, keeping performance data neat,
orderly, and high-signal ensures that it will understood and used by as many
people as possible at the company.

Measurement - in the form of metrics, traces, and aggregations of user experi-
ences - is the foundation of any performance effort.

Recommendation: Get environments out of service names
in Datadog.
Currently, your datadog service names often include environment names. For
example: bl-web-staging10-redis, production-rails-app, etc.

In Datadog, it is intended that every object - a trace, a service, a metric - has
an env tag, corresponding to the environment. This means that information for
the same service can be easily aggregated across environments (for example, for
all staging environments).

So, the recommendation is that in Datadog, no service name should contain
an environment name, and all service data should be served with an env tag.

Regarding staging, it looks like you have multiple staging environments. I
think it would be best to tag their env including the number, e.g. staging1
or staging2.

It looks like how this is configured varies a lot based on what kind of service it
is (DB, Rails, etc), so I can’t give a specific recommendation here as to how to
fix this.

3

Cost: 2, Benefit: 1 - somewhat tedious, but will really make the Datadog
service catalog much more navigable, and would make comparing services across
environments much more clear.

Recommendation: Rename transactions terminating in
Rack middleware
Currently you have a fair number of transactions in the main Rails app that get
named things like GET 200 or OPTIONS 200. This is because these transactions
are terminating in Rack middleware, i.e.:

class MyRackMiddleware
def call(env, status, app)

return 200 if do_some_business_logic
@app.call

end
end

In this case, Datadog doesn’t know what to name the transaction. There’s an
option to make Datadog use the name of the last executed Rack middleware to
name the transaction instead. Sounds perfect. Here’s a PR to turn it on

Cost: 0, Benefit: 1 It’s already done!

Recommendation: Create a stack of a performance dash-
board, monitors and SLOs
You should have a single dashboard which contains the following information
for the main monolith - it’s not specifically scoped the production-rails-app
service, however. It does represent all the important performance metrics sur-
rounding the “main monolith”.

The dashboard should include:

• Latency/Customer Experience

– Page load time (all loads)
∗ Page load time (initial/cold load)
∗ Page load time (hot SPA route changes)

– Time for interactions (i.e., time spent waiting on DOM/network for
clicks that don’t change the URL)

– Time to execute customer-blocking background jobs. For any back-
ground job where a customer is actively waiting on the result and is
blocked until that job completes (password reset email), tracks total
time from enqueued_at until completion.

– Number of responses which took longer than 500ms, organized by
controller action.

• Scalability

4

https://github.com/babylist/web/pull/27847

– Web utilization
∗ Total Puma process count
∗ Concurrent request load (average req/sec * sec/req)
∗ Process count / load

– HPA status (web and workers)
∗ current, min, max

– Web request queue timing (p75,p95,pmax)
– Worker latency

∗ For each queue, show queue latency (and SLA for that particular
queue)

• Reliability

– Database
∗ CPU (load and utilization)
∗ IOPs
∗ Read/write latency
∗ Error rates

– Memcached service
∗ Memory utilization %
∗ Hitrate
∗ CPU Utilization %
∗ Error rate

– Redis services
∗ Memory utilization %
∗ CPU Utilization %
∗ Error rate

– Error rates
∗ Web, worker

– www.babylist.com uptime

For each number on this dashboard, there can and should be an associated SLO
and an associated monitor. This means that each number has associated “good”
and “bad” values.

Cost: 3, Benefit: 3 Much of this instrumentation is missing, and many of the
“SLOs” have not yet been set. However, a complete set of SLOs, monitors and
this dashboard would represent a complete picture of the performance state of
the app.

Recommendation: Remove Sentry RUM and use Speed-
curve or Datadog
I tried your Sentry real-user-monitoring setup (Sentry calls this their “Perfor-
mance” product) and, while it was fine, I think you’ve already got Speedcurve
and it’s much better.

The shortcomings of Sentry were:

5

1. No way to change thresholds for Apdex to a number that’s actually mean-
ingful. The only options are LCP and window.load.

2. No accurate page load metric for iOS safari. iOS safari doesn’t report
LCP, so for >50% of your traffic, you have no accurate load time number.
Ouch.

3. The filtering UI is kinda weird, has some very strange visualizations that
I think are just confusing rather than helpful.

Speedcurve has a few advantages:

1. Lighthouse stuff is integrated quite nicely. While I’m not like a huge
Lighthouse fan, it’s nice to have that running in a synthetic way constantly
so you can quickly see the results.

2. Has a nice “budget” structure, essentially the equivalent of a Datadog
SLO.

3. Filmstrips are quite nice.
4. Very easy to use Synthetic testing

So, between the two, I think Speedcurve is the clear winner for me and I don’t
see an advantage of paying for both.

As far as I can tell, it looks like both Speedcurve and Sentry are costing you
about $500 a month.

One other alternative here would be to just use Datadog RUM. You currently
get about 750k sessions per month, and Datadog’s annual pricing is $1.50 per
1000 sessions, for a cost of $1125.

Advantages of using Datadog RUM:

1. Now RUM data is in the “Datadog warehouse”. It can be correlated and
compared with backend APM data, infrastructure data, turned into met-
rics and stored forever, etc. It can appear on the same dashboard as our
previous recommendation, etc.

2. RUM data now be set up with monitors, SLOs, alerts in Datadog.
3. The feature set is broadly equivalent to Speedcurve, and definitely better

than Sentry.
4. Datadog has their own home-cooked page load metric which I rather like

(it’s based on no DOM/network activity for a period of 5 seconds) which
works with iOS Safari.

Disadvantages of Datadog RUM:

1. To keep cost the same, you’d probably have to sample at 50%, which
means the total session number would no longer be correct/true as it is in
Speedcurve/Sentry.

2. Synthetic testing is more difficult to use.
3. Default dashboards in Datadog are not as nice as the ones in Speedcurve.

If cost were no object, I’d just run Datadog RUM at 100% sample rate and call
it a day.

6

Cost: 0, Benefit: 1: This recommendation is more about cutting a small
amount of cost than improving any particular customer experience.

Recommendation: Implement a custom “page is loaded”
event in RUM
Determining “when a webpage is loaded” is actually quite hard to do in a way
that’s agnostic to how that webpage works. Largest Contentful Paint is the best
attempt anyone’s made, but it’s not perfect.

As mentioned before, the biggest drawback of LCP right now for you is that it’s
not being sent by >50% of your traffic (iOS Safari). That size of an observability
blind-spot is not great.

All RUM tools allow you to implement custom timings and events. I think
Babylist can ship one of their own that represents “this page is loaded”.

At Gusto, that event was “when there are no more Loading spinner elements
rendered by the React app, the page is loaded”. I’m not sure yet what that could
be at Babylist. You need something that’s generally aware of how the app is
architected and works, yet is agnostic to the particular page being displayed. So
far at Babylist, my experience is that the frontend is a bit of a mishmash and
the rendering approach might be significantly different from page to page. We
might just implement something of our own similar to Datadog where the page
is loaded “after a few seconds of inactivity” on network/DOM? I’m not sure.

Without an accurate number representing “this is how long someone waited until
the page is usable” we are really stabbing in the dark on customer experience.

Cost: 3, Benefit: 4 This kind of project can end up being difficult to imple-
ment yourself. If we use Datadog’s load number and decide it’s “Good Enough”,
this becomes Cost 0, but I’m not sure that will be the case. This number will
basically become the foundation of all of our customer-experience efforts, so
that’s why the Benefit number is high.

Outcome: 99.99% Uptime
One thing I took from Jaime after our initial conversations was the value of up-
time - at Babylist, uptime is worth at least $1,000/minute, just in sales/revenue
terms. Of course saying that “the site is down for 1 minute, that costs us $1,000”
is fudge-y math (people retry things after they’re fixed, reputation damage, etc)
but it’s a great starting point.

Three nines of uptime is 43 minutes of downtime a month, and four nines is
about 4 minutes. That’s a $40,000 a month difference at Babylist, something
probably well worth our time to figure out. Going from 4 to 5 nines, though,
eh, that’s probably not going to get anybody major plaudits. 4 nines is a great
target for this level of business.

7

While Babylist is overall in very good shape, I think there’s a few areas that
could cause trouble in the future or be the cause of a future incident. These
“footguns” are also included in this section.

With this outlook in mind, these recommendations are focused around potential
performance-based threats to uptime.

Recommendation: Move to SLA-based queues
Every background job has a nautral deadline of “when it should be done”. In
a well-set-up background system, each job is also usually quite short, taking
30 seconds or less to execute (when jobs take longer, they may be interrupted
mid-execution by a shutdown, which is dangerous).

That means we generally can say that the time a Sidekiq job will take to finish
is:

time_spent_enqueued + 30.seconds

So really, the main component in how long any Sidekiq job will take to execute
is the time it spends in the queue. That’s the number we have to control.

But how long is acceptable to spend in the queue? This varies widely from
job-to-job.

Some jobs are what I call customer-blocking. A customer is actively waiting
on their completion, right now. The job completing unblocks that customer and
lets them go do something else. Some examples of customer-blocking jobs:

• Password reset emails
• Any job where completion is announced in the web UI by WebSocket
• Returning an item back to inventory (it was “reserved” temporarily by a

customer, now we’re making it available again)

For these jobs, the acceptable amount of time_spent_enqueued is basically zero.
That makes these jobs very special. They should live in their own queue, which
will usually be quite heavily resourced. Customer blocking job queues cant even
be effectively autoscaled, because by the time you bring up new capacity via an
autoscaler, the SLA is alread long-ago breached.

On the other end of the spectrum, there are jobs that could be executed 24 hours
from now and still be fine. Backfills, reporting, and more are not particularly
time sensitive at all.

In my book Sidekiq in Practice I call these SLA queues. Each queue is named
after it’s service level. This is a very powerful idea which allows a number of
things to happen:

1. Product engineers are forced to set a latency SLA for every single job by
assigning it ito the appropriate queue.

8

2. It is extremely clear regarding what number to set your monitors, SLOs
and alerts to for these queues (it’s in the name!!!).

3. Autoscaling is a breeze. If the SLA is under threat, scale up!
4. Load shedding is easy. Database under heavy load? Pause the 24 hour

queue… it can wait a while. More on this later.

Cost: 3, Benefit: 4 It’s a significant migration, as every job will need to be re-
coded to a different queue. This usually involves a lot of manual “thinking” labor.
However, the clarity this brings around service levels expected and obtained out
of background jobs is incredible.

Recommendation: Autoscale Sidekiq based on queue la-
tency
While SLA-based queues make “when to autoscale” very clear, they’re not
strictly necessary for this recommendation to work.

As previously mentioned, every job has an inherent SLA expecation. Hopefully,
every job in each queue you have has the same SLA (again, may be true today,
maybe not).

Since “how long it takes jobs to execute in total” is what we care about, this
number should also be the basis of our autoscaling.

Autoscaling based on CPU is particularly fraught for background jobs, as the
amount of time spent waiting on CPU is highly variable based on the job type.
Imagine you have a job that spends 10 seconds waiting on an HTTP call, and
then you enqueue 1 million of them. What’s the CPU usage going to look like
while we run those jobs? Will your autoscaler ever trigger?

Instead, each job should report, via a Sidekiq server middleware, how long it
has spent in the queue before being executed (queue time). This number can
then be piped into your HPAs using a custom metric.

You can also do some fanciness around prediction here, but it’s generally not
necessary. For example, in a 5 minute SLA queue, I would scale up when
queue latency reached 5 minutes - how long it takes to bring up a new
pod and scale down when queue latency was less than ~20% of the SLA.

Cost: 2, Benefit: 3 The only hard part is really getting the piping set up the
first time for the custom metric. After that, just requires some thinking caps
on regarding SLAs. This is a Cost 1 task if you are using SLA queues.

Recommendation: Break up or iterable-ize your 10 longest
running Sidekiq jobs.
I mentioned previously that it’s good if Sidekiq jobs take 30 seconds or less to
execute. There’s two main reasons:

9

1. The Sidekiq shutdown timeout is 25 seconds by default. Jobs that always
execute in this time or less don’t get interrupted by shutdowns.

2. Jobs which take up capacity for long amounts of time have a big impact
on the queue time of that queue. For example, imagine enqueueing 10 jobs
that all take 60 minutes each on a concurrency 10 queue. What happens?

You have a handful of jobs which reliably execute in over a minute. Simply
look at the rails-app-sidekiq-worker service and sort descending by “p75
latency”. These jobs are dangerous!

Most of them are in BLFulfillment and run on a daily schedule.

You have two options here:

1. Break them into a parent/child job structure, where the parent job “fans
out” to X number of child jobs and each child job executes a portion of
the job.

2. Use the new Sidekiq 7.3 “iterable” features to at least safely iterate through
large amounts of work and deal with interruption, and then put these jobs
in a high-SLA queue of 1 hour or higher to minimize impact on queue
times.

Cost: 2, Benefit: 2 The work here is straightforward but can be a little bit
involved - luckily you really only have to do it for 10 jobs. I don’t think cur-
rently that these jobs are having a big impact on queues, but they are certainly
footguns that will blow up in the future.

Recommendation: Merge the Schema Cache PR, aim to
cut p95 request queue time
I think your p95 request queue time when running a deploy is a little high. It’s
probably not really noticable for anyone using the site, but I would say that
this magnitude of request queue disturbance is not typical for my other clients,
so there’s probably room to improve here.

I don’t really have a great idea of where to go here. I think the schema cache
PR you already put up is a great start: ship it. I don’t agree that the best place
to do this is in the entrypoint, but I don’t have solutions to the disadvantages
of doing it in the image.

At least doing it in the entrypoint we still solve the problem: servers come online
with a hot schema cache. Yes, they also take longer to boot now, but I think
we can afford to have that problem (and ofc it’s an easy revert if that’s a big
issue).

Once this goes out, I think we need to reassess the degree of request queueing
and decide if more investment is necessary.

Cost: 0, Benefit: 1 Code’s already done, just do what you have to in order
to hit merge.

10

Recommendation: Shed load using background job queues,
either automatically or manually
On Prime Day, you had an incident which involved DB load going too high.
This is only going to happen more as you grow.

A very useful tool during these kinds of scenarios is the ability to pause back-
ground job load. Background jobs can be a real firehose of database load, and
they tend to correlate with web load (lots of people ordering things creates
both web and background load). The ability to pause this load until the storm
subsides is a valuable tool in the responder’s toolbox.

However, SLA queues are basically a prerequisite to this. Without it, responders
need to consult potentially-out-of-date documentation regarding which queues
can be paused, and for how long.

Think through this scenario in your head and ask yourself if an incident respon-
der can do this today:

The DB is going down under heavy load. The responder wants to pause all
unnecessary background job load.

1. Which queues can they pause?
2. For how long can each queue be paused?
3. Can you give them any idea what the impact of pausing each queue will

be?

At Gusto we also had one or two “unpausable” queues. We simply name these
queues something like “5-minute-DO-NOT-PAUSE” to denote that they could
not be paused for any reason.

Cost: 0, Benefit: 2 This is basically just a benefit of SLA queues. During
periods of high database usage, your background job setup can generate pretty
high amounts of DB load (24 hours spent waiting on the database for every
hour, in the most recent week), so I think the payoff here could be high.

Recommendation: Set SQL database pool based on thread
concurrency, controlled by a single, consistent ENV vari-
able
Currently your database pool is set like this:

pool: <%= if ENV['SERVICE_NAME'] == 'worker' then 100 else 25 end %>

This works, because ActiveRecord’s connection pool is lazy. You don’t use a
connection from the pool unless a thread needs it. Your actual thread concur-
rency is much lower than the number here in most environments (like less than
5 for web at least!) so most likely these limits are never hit. You might as well
set this number to a million or something for all the good it’s doing you here.

11

I’m not a huge fan of this as it means that connection pool leaks will never be
detected, because even in a leak scenario you won’t hit pool limit. That could
mean you end up have a ton of idle connections on the database, slowing it
down, and you don’t notice.

My preferred db pool set up is:

pool: <%= ENV.fetch('RAILS_MAX_THREADS', 5).to_i + 5 %>

That way, we’ve got a small buffer for minor leaks, but it’s always “right-sized”
for our actual level of concurrency. Then, I use RAILS_MAX_THREADS every-
where to set concurrency. Puma and Sidekiq will both read this value to set
their thread pool size by default, no configuration required. You can also set
your Redis connection pool sizes this way, though that’s less important as idle
Redis/memcached connections don’t use as many resources as an idle Postgres
connection.

Cost: 1, Benefit: 1 Housekeeping, really.

Recommendation: Move to BigRails connection manage-
ment for Redis, cleanup what’s stored in which Redis
database.
You have four Redis databases in use by the main app:

• Sidekiq (aka $redis_worker)
• Redis web (aka $redis)
• Rack attack
• Sidekiq limiter

The first part of this recommendation is that using globals without a con-
nection pool is not thread-safe. You should migrate both of these globals
to a connection pool. Yes, you’re not using these today in a multithreaded en-
vironment, but someday someone probably will, and they will get footgunned
by this.

The second part, which I think is more serious, is that you should stop mixing
cache and critical app data in $redis. You sometimes use $redis as a
cache, and sometimes to store values which cannot be expired without breaking
correctness.

The problem is that these two use cases require fundamentally different eviction
strategies. Caches are designed such that any key can expire and later be a
cache miss and everything is fine. Putting application critical data in that same
database which absolutely cannot be expired is a recipe for eventual disaster.

For example, just taking the locking code I previously linked. I think the eviction
policy for $redis is the redis default, which is volatile-lru. Let’s say for some
reason the caching use case suddenly puts a lot of pressure on the database and

12

https://github.com/babylist/web/blob/11aed54a4ab50d9d1af061b210258966720cea55/lib/zendesk_api/help_center_faq.rb#L66
https://github.com/babylist/web/blob/11aed54a4ab50d9d1af061b210258966720cea55/lib/zendesk_api/help_center_faq.rb#L66
https://github.com/babylist/web/blob/11aed54a4ab50d9d1af061b210258966720cea55/lib/bl/locked_task.rb#L7
https://redis.io/docs/latest/operate/rs/databases/memory-performance/eviction-policy/

brings DB memory usage to 100%. Suddenly, your job locks are on the chopping
block and could be evicted far earlier than you expected!

You should:

1. Move all cache usecases out of $redis into Rails.cache.
2. Set the expiration policy on all Redis databases to noeviction.
3. Use bigrails-redis to manage Redis connections for all four databases.
4. Remove all non-connection-pooled use.

Cost: 3, Benefit: 2 It’s a fair bit of work, but the footgun potential here is
not to be sniffed at.

Outcome: Improve page load time
When I write Outcomes in these reports, I usually like to give concrete estima-
tions and targets for how much we’re going to improve the number in question.

However, in this case, I can’t do that. We don’t have a number that I trust for
frontend page load time. That number would:

1. Cover iOS Safari page loads (not covered today by LCP)
2. Cover all cold and warm (React-powered-route-changes) loads.
3. Be hooked in to how your app actually works (based on loading spinners

or some other threshold we decide for “this page is ready”).

Without that number, I can’t give a target for improvement. However, I do
know improvement is possible, because there’s some low-hanging fruit that we
should pick in any case.

Recommendation: Optimize 4 main web transactions.
On any app, page load times are going to be in the ~3+ second range. That
means that for the most part, if 75% of the time (p75) our web actions respond
in ~500ms or less, they’re not making up a noticeable portion of pageload time
and we should focus on frontend.

However, you have a handful of web transactions that are reliably slow that
would make a 5-20% difference in page load time if we optimized them down:

1. BlRegistry::API::V3::RegItemsController#index. This is on the
critical path for registry viewing. Fixing it is pretty straightforward - it
simply has N+1 issues across about 2 dozen tables. p75 is 700ms, we
should shoot for halving that at least.

2. BLRegistry::API::V2::RegistryController#show. Not for the we-
bapp, but the mobile. Bad N+1 issues. Luckily, its across fewer tables
(like 5 or 6), so may be an easier fix. p75 is 1.5 seconds or so. Again, we
should shoot for 300ms or less.

13

https://github.com/rubyatscale/bigrails-redis

3. BLRegistry::API::V3::ReservationsController#index. Unsure of
the impact here, because I think a substantial number of these are pre-
renders. It gets a lot of volume, though. a p75 of 700ms with this many
N+1s (5-6 tables) should easily be optimizable down to 300ms.

4. BLRegistry::API::V2::ReservationsController#index. Unsure
how much overlap there is here in the code with V3, but the underlying
cause is the same, so I’m gonna guess we can kill 2 birds with one stone
here.

Simply fixing the n+1 issues across these 4 controllers would go a very long way
to improving the full backend performance picture on important pages.

Cost: 3, Benefit: 2 It’s a limited number of endpoints, and they’re not THAT
big of a component of total page load time. I find that fixing the first “batch”
of N+1 pages is tough, then you start to set up processes and tools that make
future fixes easier.

Recommendation: Profile allocations in V3::RegItemsController#index
I love that you’re tracking this by the way.

Each week, you have about 4k requests allocate more than 10 million objects.
That is a lot of objects and will almost certainly result in a very slow response,
an increase in GC activity and probably a lot of unnecessary memory usage.

Of the requests allocating more than 10 million objects, 50% of them are the
RegItemsController#index action.

Weirdly, most of these high-allocation requests are currently for a single registry:
5192132, and some of the requests involve high offsets, which suggests bot
activity.

Even if this is not “real” traffic, it has the potential to blow out your memory
use.

Ideally, you clone this registry down locally and repro the issue with
memory-profiler and see where all the allocations are coming from.

Cost: 3, Benefit: 1 Might be just a curiousity.

Recommendation: Profile allocations in V2::RegistryController
Something different is happening on this controller. Each week, you get 4 million
requests that allocate more than 1 million objects. That’s bad for the reasons
enumerated in the previous reccomendation. Of these requests, 2.6 million (over
50%!) are from V2::RegistryController.

I suspect just fixing the N+1s on that controller will probably just fix this, how-
ever sucking down a few registries locally and repro-ing with memory-profiler
will probably also help a lot to debug.

14

Cost: 2, Benefit: 1 I’m more convinced that fixing this one leads to a bigger
latency gain on the controller action than overall memory improvement.

Recommendation: Create a seed or “registry pull” process
Your performance issues on the web side are almost entire N+1. In my expe-
rience, this is fundamentally caused by developers having unrealistically small
and inaccurate (i.e. not completely “filled out”) data in development. You can’t
fix what you can’t reproduce.

Luckily, N+1s are not a matter of pulling down entire databases. You only need
all the data actually related to a single registry (i.e., everything you see in the
trace view on Datadog for a single request). The actual size of data required is
not large at all, maybe a couple thousand rows.

There are a number of challenges you have to figure out though:

1. Anonymizing PII
2. Figuring out which data to segment out exactly.
3. Making it easy to use for every dev

The solution I saw at Gusto was completely custom-coded, probably only pos-
sible if you have 10x the engineering resources that Babylist has. There are a
number of vendors and OSS projects (i.e. Snaplet) which purport to do this for
you, that may be a possible avenue.

Cost: 3, Benefit: 3. Working with realistic data really does provide a big
benefit. Devs love fixing perf problems, but they need to be able to repro them
locally to do so.

Recommendation: When viewing registry as a guest,
fetchReservedRegItems should only fire once and it should
not wait on page readiness.
I noticed this one while looking at the Network graph in Chrome as a guest.

fetchReservedRegItems causes a request to the backend.

This is installed as an effect hook on the RegistryPageGuest component.

The problem is that this function is not idempotent, and something in the
dependency array is firing twice (showGiftTracker changing twice I guess?).

This causes the network request to fire twice unnecessarily.

It’s also unclear to me why the network request needs to block on page readiness.
It should fire as soon as possible. We generally don’t care about the number of
parallel requests we’re making to the backend when it comes to frontend perf.
Blocking on page ready means the modal (which I think is where this is used?)
now has an extra loading state that isn’t necessary.

15

https://github.com/babylist/web/blob/11aed54a4ab50d9d1af061b210258966720cea55/app/assets/javascripts/registry/actions/reg-items-actions.js#L454
https://github.com/babylist/web/blob/11aed54a4ab50d9d1af061b210258966720cea55/app/assets/javascripts/registry/components/registry-page-guest.jsx#L69-L73

You can fix this either by making the fetchReserveRegItems function idempotent
or by moving it out of the hook.

Cost: 1, Benefit: 1 Housekeeping issue.

Recommendation: Pick a way forward with frontend: SPA
or Turbo.
Currently, almost every click on babylist.com is a “cold” navigation. You change
the URL, toss away the old page and start on the new one. Just like grandpappy
did!

This is currently taking at least 3 seconds per page load, probably more on
mobile (again, hard to tell re: the Safari iOS data).

Using either Turbo or a SPA approach will get this down to 1 second on ~66%
of your page navigations.

There is simply no other recommendation I can make which will have
as big an impact on page load time as this. Moving as many page loads
as possible into warm/hot navigations will have a massive impact on the feeling
of using the site, decreasing overall page load time by 50% or more.

It really doesn’t matter from a perf perspective which approach you pick: tradi-
tional Rails with Turbo or some React-powered behemoth. There are obviously
other, non-perf considerations here. But you need to pick a path and start that
migration.

Cost: 5, Benefit: 5. Moving to a world where the Javascript VM is not
restarted every time you click is painful. Lots of things can and do break. But
there is no other recommendation in this report with as big of an impact on
customer experience.

Recommendation: Reduce JS bundle size
This one becomes less important if you follow my previous recommendation.

Your JS bundle is not small. Vendor and common, which block page load, are
1.5 MB on the wire and almost 10MB uncompressed.

Uncompressed size correlates to time spent compiling and running JS, and
Speedcurve indicates that pageloads are spending around 2 seconds on JS long
tasks on each pageload. That’s quite a lot.

There are a number of bundle-cleaning approaches. I’m sure you’ve probably
tried a few. It may be worth trying again, because that is a big, big bundle.

Cost: 2, Benefit: 2 Bundle-pruning is usually not that painful. JS download
is on the critical pageload path, so any major reduction here could have a very
measurable benefit.

16

Outcome: Reduce infrastructure spend by
$299,000/year
In a previous recommendation, we talked about how uptime is worth
$1000/minute, and going from 3 nines to 4 nines (that is, from 40 to 4 minutes
downtime per month) is worth $40k a month to the business.

In my estimation, you’re currently spending in a few ways which doesn’t mate-
rially impact that uptime number, but does cost you a lot of money. I’d like to
trim some of that fat.

For all infrastructure spend, I’d like to:

1. Squeeze the most out of what we’ve got. Configure things correctly to
maximize throughput.

2. Remove “HA”-motivated spending where it’s not delivering sufficient
guarantees that it will materially impact our uptime.

3. Right-size all components to the actual load they experience.

Recommendation: Set Sidekiq concurrency to 10 ev-
erywhere, CPU limit to 1, and memory limit to 4GB.
($10k/year)
File this under “squeeze”.

I cover this in more detail in Sidekiq in Practice, but I basically believe that
10 is the optimal concurrency number for almost all Sidekiq workloads. Setting
it higher has minimal benefit in terms of throughput but can lead to increased
service time (time spent running the job), and setting it lower can leave too
much throughput on the table.

CPU limits on Sidekiq should just be set to how much CPU it can ever actually
use - 1 full core. Memory limits should be set to what the m-series allows in
terms of memory-to-CPU ratio, aka 4GB per core.

I would probably set the requests for about half that, based on previous load.

Currently bl-web-sidekiq-default is set to a 2 core request with 4G of memory.
The 2CPU request is not necessary and causes 2x overprovisioning, as a single
Ruby process can create more than 1 CPU core worth of load.

Cost: 0, Benefit: 1 Twiddle some numbers, reduce the infra allocation of
your Sidekiq fleet by 30 cores, or about $10,000 a year, assuming this boils
down to the nodes provisioning 30 fewer cores. My cost assumption is based on
on-demand pricing.

17

https://app.datadoghq.com/notebook/9558963?cell_id=96ay5v2j

Recommendation: Autoscale Puma based on a combina-
tion of request queue latency and utilization/busyness.
($240k/yr)
Web autoscaling works like this:

1. We want a web request to spend 20ms or less waiting on an empty Puma
process, 75 percent of the time.

2. We should scale up if that threshold is breached.
3. In general, around 50% of our Puma workers should be busy and process-

ing a request at any given time. If the number is lower than that, we are
probably overscaled.

You currently scale based on CPU rather than request queue time. The disad-
vantage of this is that it’s a second-order metric from the one we actually care
about (time customers spend waiting). A number of things (I/O changes in the
workload) can cause this metric to be inadequate. It’s also hard to set. Is 60%
CPU utilization bad? Is it good? I’m not sure!

Web pods currently run at a 2 CPU limit, with 9GB of RSS, and 6 workers
each. On average during a week you’re running almost 600 containers, and
during peak load as many as 2000.

Double that number and we get an idea of how many CPU cores you have
available to process work/ability to do work in parallel.

You average 331 req/s over a week, with peaks at 1.3k req/sec. Average response
time 150 milliseconds.

Using Little’s Law, we can get an idea of the long-run concurrency of the whole
system. 331 req/sec multiplied by 0.15 seconds per requests is 50. That means
that, on average, you are serving 50 requests concurrently at any given moment.

So, you’re serving 50 requests but provisioned for 1200. That’s a utilization of
less than 5%. Not great. During peak periods, it’s the same. Ideally, I think
that number would be around 50%.

Autoscaling Puma based on request queue latency instead would get us much
closer to this number. You simply have to report it somewhere (Datadog?
Cloudwatch?) and then pump it back to the HPA. You will need to capture
the request queue time metric yourself, which has had some methodological
problems in the past so we’ll have to do that carefully this time.

Cost: 2, Benefit: 3. Removing about 450 containers on average (probably on
average also 450 cores of resource reservation) should save about $20,000/month
or $240,000 per year. Getting the HPA right here can be tricky.

18

https://en.wikipedia.org/wiki/Little%27s_law

Recommendation: Set Puma to 10 workers on 8-core pods
with 32 GB requests.
Currently you’re running very overprovisioned on Puma workers to CPU cores.
You’ve got 6 workers on a 2 CPU setup. This makes me nervous.

What happens here is 6 workers can ingest 6 requests at the same time, and
then fight it out over 2 CPU cores. This is probably:

1. Prematurely triggering autoscaling.
2. Causing request queueing during restarts.

Yes, you will need to have a somewhat higher number of Puma processes than
CPU cores for optimal throughput, because you’re running single threaded and
so therefore need extra workers to use all available CPU.

However, the amount of time that the app spends on average waiting on I/O is
less than 25%.. We can use Amdahl’s law to get an estimate of how much we
should overprovision (I’m not gonna do the math here) but it’s going to be at
maximum about 25%. 10 workers with 8 CPU seems good to me.

I also want a slightly higher number of workers per pod than you currently run
in order to reduce request queueing further. More workers per pod == less
chance 100% of them are busy == less request queueing.

Cost: 0, Benefit: 2 Unsure on benefit here, but it’s just number twiddling.

Recommendation: Downsize the main database to
r7g.8xlarge. Move read replication further down the
backlog. (18k/year)
I have a feeling this is gonna be a spicy one.

You had a database-fueled incident during prime day which caused the organi-
zation to decide the solution was a bigger database.

The reasoning for the DB upgrade looks flimsy to me. You never exceeded your
IOPS thresholds, and CPU load on the main database was only temporarily
extremely high (this isnt a daily occurence) and could easily be scaled up/down
in anticipation of a prime day next year.

Post-upgrade, a 20ms-per-request reduction in DB wait time was noted. That’s
not really doing a lot for anyone. 20ms is not noticeable for the customer, and
in terms of throughput/load, you’re gonna do a lot more by rightsizing your
deployment than by reducing time spent on each request.

In addition, I can’t be sure but I think the reason for that 20ms per request
improvement was the increase in total available memory, which RDS then au-
tomatically just uses to increase buffers/cache. You could have made a lateral
move into an r-series instance instead and got that memory without the extra
cost.

19

https://app.datadoghq.com/notebook/9558963?cell_id=0j119k4g
https://app.datadoghq.com/notebook/9558963?cell_id=0j119k4g

In the past week, CPU utilization maxes out at 15% and about 4 sessions.. This
is on an m5.16xlarge, which is $4700/mo ondemand for 64 cores, 256MB and
60k baseline/max IOPS. An r7g.8xlarge is $3127/mo for the same memory,
half the core count (which you’re doing fine on!) and 40k IOPS (which you’re
also fine on). If you agree with me that 20 milliseconds isn’t worth $18k a year,
you can go to the 4xlarge and still be fine.

If your true DB load is around a 4 to 8xlarge, that means you can continue
vertically scaling by at least a factor of around 2 to 3. r6i.32xlarges are available
with 128 cores and a terabyte (!!!) of RAM. Replication and sharding are not
simple tasks, and frequently don’t “pay off” in terms of reduction the primary
as much as you’d like. In the cost/benefit curve, I think you should be thinking
in terms of reducing load on the primary and scaling vertically at this point.

ProxySQL, read replication are not simple engineering tasks. I’m more of the
mind that could easily vertically scale this to a 2x higher load (at least) and, if
you’re still feeling pain, then you can consider these offramps.

Cost: 1, Benefit: 2 $18k/yr in savings at least for another db swapover.

Recommendation: Reduce memcached to 1 r7g.large node.
($16k/year)
web-memcached is currently set to 5 nodes on r6g.xlarge. That’s $1500/month
on-demand.

I’m not sure of the reasoning behind 5 nodes. Each node has 26GB of capacity.
It means your cache graph looks very funny - it starts at 128GB of memory free
and then slowly reduces until the cache is fully turned over for some reason..
This is not the way a cache is supposed to work. A cache is supposed to be
constantly churning and evicting things and more or less operating at 100%
utilization with a >90% hitrate.

You’ll get by fine with a single r7g large (13GB).

Cost: 0, Benefit: 2 Number twiddling leads to $1300/month in savings.

Recommendation: Slash Redis database sizes ($5k/yr)
You’ve got a few different Redis databases, but none of them are caches (or they
won’t be after we implement all this) so all of them memory usage should never
approach 100%.

In the past 3 months, only web has come close to utilizing this much. The others
all use less than 5%, all the time.

rack-attack (this one also on dw), sidekiq-limiter, and redis-sidekiq-worker
are all on m6g.xlarge (13GB), at $216/mo. I think these could all be bumped
down at least one size to a m7g.large, for $115/month.

20

https://app.datadoghq.com/notebook/9558963?cell_id=aq2abzu2
https://app.datadoghq.com/notebook/9558963?cell_id=chfxqjsh
https://app.datadoghq.com/notebook/9558963?cell_id=chfxqjsh

Consider also the cost of the HA replicas here (doubling your costs). In total
(including web), they’re costing $750/month. Do they prevent at least 1 minute
of downtime a month? Maybe.

Cost: 1, Benefit: 1 These db switchovers are more complex than memcached
(cause you can just blow that away). This is worth $5000/year.

Recommendation: Remove the Sidekiq high-memory de-
ployment by auditing Sidekiq memory use
You already report allocated object count for web.

I think you could use something like getprocessmem to create a Sidekiq
middleware that reported RSS before/after each job. It’s a pretty low-overhead
system call. Technically it won’t be 100% accurate because of concur-
rency/multithreading, but I think it would be close enough to clue you in as to
what jobs exactly are causing high memory usage with what job arguments.

From there, you could use memory-profiler to figure out how to reduce this
memory usage.

The benefit would be one less sidekiq deployment to manage, and getting more
jobs into the “blessed” SLA-based system.

Cost: 2, Benefit: 1

Recommendation: Multithread Puma to remove 15% of
your web fleet. ($2,000/yr)
So, I’m actually going to tell you not to do this. I know. Hilarious. I’m the
maintainer of Puma, telling you not to multithread your app.

Why multi-thread? It doesn’t make your app any faster. The only reason to
multi-thread is to increase concurrency per unit of infrastructure (CPU cores).
And when your app is spending less than 25% of its time on I/O, that gain is
quite limited.

If you implement my autoscaling recommendations, switching to Puma with 5
threads probably only improves your throughput by 10-15%. It’s just not going
to register.

We’ve already found 1 major reason you can’t multithread on web ($redis), what
other major multithreading bugs might be lurking?

Cost: 0, Benefit: 0. Forget it.

Recommendation: Reconfigure the fleet to use m7i.2xlarge.
Your current “main fleet” is on the r6a.2xlarge. Given the memory usage of
the app, it looks like 1 CPU core worth of load uses less than 4GB of RAM. To

21

https://github.com/zombocom/get_process_mem

me, that shows you could fit almost all your workload onto an m-series.

r6a is an EPYC 7R13. The m7i is a Sapphire Rapids Intel Xeon, available for
basically the same price. It should be a roughly 10% gain in straight-line single
thread speed for no change in price.

Cost: 0, Benefit: 1 Marginal gains, but just slot it in for your next blue/green
swap.

Outcome: Reduce build times to less than 10
minutes.
No one likes waiting on builds. I mean, I know that you spent 2 weeks waiting
on a pull request review, but the extra 10 minutes waiting for the build to go
just adds to the sting, right?

Recommendation: Consider self-hosting
I think the future of CI is self-hosted runners. There’s so much juice you can
squeeze here. You can at least get your CI spend on to your own AWS bill, which
gives you more power for Savings Plans or reserved instances or spot instances or
other shenanigans. Or, you can just use a completely different provider entirely.
I’ve seen a lot of success with CI on Hetzner, which has instances with very high
single thread speed.

Cost: 3, Benefit: 2. Too hard to be certain as to the “CircleCI tax” on
latency.

Recommendation: Get Journey tests off the critical path
I could be missing something here, but I’m not sure why the Jest tests don’t
need to wait on build, but the Journey tests do. Making Journey not depend on
build would move it off the critical path (and put the pressure on Jest/Rspec,
which can be parallelized further).

Cost: ??, Benefit: 1

Recommendation: Keep Cranking That Parallelism, Baby
Your test examples aren’t really that bad. You run ~1500 examples per minute
on 8 cores. That’s 187 per minute, 24 per core per minute. I think 1 ex-
ample/core/second is more reasonable, so maybe there’s a 50% gain lurking
around here if you change hosting provider, but that’s really guessing.

Especially if you move to cheaper self-hosted runners, running 26/27k examples
is just a matter of how much parallelism you want to crank. Gusto was doing
300+, you’re at 32. Take all that money we’re going to save on infra and use it
to make your devs a little happier.

22

Keep in mind there’s no point in parallelizing further once Jest/Rspec are faster
than the build step.

Cost: 3, Benefit: ?? It won’t be cheap (I think), but who can put a price on
5 minute builds?

Outcome: Successful iterable integration
Had a quick think about this one, this is just napkin math/off the dome thoughts
I had last week.

Recommendation: Treat this as a microservice, run on its
own fleet of 40 Puma workers, push work to Sidekiq and
batch/flush writes.
The main requirement here is to take 8 million web requests over a very short
period of time and turn each of them into a row in the database. This 8 million
request dump can come at basically any time, and for the rest of the time,
service usage will be minimal.

We want to:

1. Respond to Iterable with a 200 OK within a few seconds, 99.99% of the
time or more.

2. Turn each 200 into a row in a SQL DB eventually (not particularly latency
sensitive here).

This is a system that wants to be tuned for high availability, with a tradeoff
of high latency (both on the write side and on the 200 OK side). Iterable’s
webhook bots will accept MUCH higher latency than any human customer will,
and we don’t particularly need these database rows to appear microseconds later.
A few minutes will do.

This requirements are quite a bit different than your main application, partic-
ularly on the web side. Ideally, this web service responds extremely quickly (a
couple of milliseconds) and it must be kept at high capacity at all times (to
deal with a sudden million-request influx). However, it can also deal with high
request queue latency. This is very, very different from the main bl app.

The app also basically just needs to turn a simple webhook into a simple Sidekiq
job. It doesn’t need to interact with the rest of the BL monolith, code-wise.

40 Puma workers, with response times of ~5 milliseconds, could easily handle
4000 requests per second or more. Slap that on some m7is, it will cost about
$1200/month. You probably won’t autoscale this (depends on the details of
Iterable’s retry/backoff behavior).

As for the worker side, I’m a bit more neutral. You could decide to put this
in the main app, with the rest of the SLA queues. It could also have its own

23

queue/deployment combo.

You should also consider whether or not this should go in its own SQL DB. In
Rails these days its quite easy to put models into their own database. Of course,
you can’t join them then - but how often will you do that? I don’t know.

As for the workers itself, I would have a rolling cron job start something up every
minute to gather the batch of writes to be done, package them into 1,000-row
insert statements, and then flush. It will be critical that this job can be easily
paused by ops if necessary.

(Side note: I did the math on Lambda. It doesn’t work out. Don’t bother.)

Cost: N/A, Benefit: N/A.

Summary
• Outcome: Measure performance accurately

– Recommendation: Implement a custom “page is loaded” event in
RUM Cost: 3 Benefit: 4

– Recommendation: Remove Sentry RUM and use Speedcurve or Data-
dog Cost: 0 Benefit: 1

– Recommendation: Rename transactions terminating in Rack middle-
ware Cost: 0 Benefit: 1

– Recommendation: Create a stack of a performance dashboard, mon-
itors and SLOs Cost: 3 Benefit: 3

– Recommendation: Get environments out of service names in Datadog.
Cost: 2 Benefit: 1

• Outcome: 99.99% Uptime

– Recommendation: Shed load using background job queues, either
automatically or manually Cost: 0 Benefit: 2

– Recommendation: Merge the Schema Cache PR, aim to cut p95 re-
quest queue time Cost: 0 Benefit: 1

– Recommendation: Autoscale Sidekiq based on queue latency Cost: 2
Benefit: 3

– Recommendation: Move to SLA-based queues Cost: 3 Benefit: 4
– Recommendation: Set SQL database pool based on thread concur-

rency, controlled by a single, consistent ENV variable Cost: 1 Benefit:
1

– Recommendation: Break up or iterable-ize your 10 longest running
Sidekiq jobs. Cost: 2 Benefit: 2

– Recommendation: Move to BigRails connection management for Re-
dis, cleanup what’s stored in which Redis database. Cost: 3 Benefit:
2

• Outcome: Improve page load time

24

– Recommendation: Reduce JS bundle size Cost: 2 Benefit: 2
– Recommendation: Pick a way forward with frontend: SPA or Turbo.

Cost: 5 Benefit: 5
– Recommendation: When viewing registry as a guest, fetchReserve-

dRegItems should only fire once and it should not wait on page
readiness. Cost: 1 Benefit: 1

– Recommendation: Create a seed or “registry pull” process Cost: 3
Benefit: 3

– Recommendation: Profile allocations in V2::RegistryController Cost:
2 Benefit: 1

– Recommendation: Optimize 4 main web transactions. Cost: 3 Ben-
efit: 2

– Recommendation: Profile allocations in V3::RegItemsController#index
Cost: 3 Benefit: 1

• Outcome: Reduce infrastructure spend by $299,000/year

– Recommendation: Reduce memcached to 1 r7g.large node.
($16k/year) Cost: 0 Benefit: 2

– Recommendation: Set Puma to 10 workers on 8-core pods with 32
GB requests. Cost: 0 Benefit: 2

– Recommendation: Reconfigure the fleet to use m7i.2xlarge. Cost: 0
Benefit: 1

– Recommendation: Downsize the main database to r7g.8xlarge. Move
read replication further down the backlog. (18k/year) Cost: 1 Bene-
fit: 2

– Recommendation: Autoscale Puma based on a combination of re-
quest queue latency and utilization/busyness. ($240k/yr) Cost: 2
Benefit: 3

– Recommendation: Set Sidekiq concurrency to 10 everywhere, CPU
limit to 1, and memory limit to 4GB. ($10k/year) Cost: 0 Benefit: 1

– Recommendation: Multithread Puma to remove 15% of your web
fleet. ($2,000/yr) Cost: 0 Benefit: 0

– Recommendation: Slash Redis database sizes ($5k/yr) Cost: 1 Ben-
efit: 1

– Recommendation: Remove the Sidekiq high-memory deployment by
auditing Sidekiq memory use Cost: 2 Benefit: 1

• Outcome: Reduce build times to less than 10 minutes.

– Recommendation: Keep Cranking That Parallelism, Baby Cost: N/A
Benefit: N/A

– Recommendation: Get Journey tests off the critical path Cost: N/A
Benefit: N/A

– Recommendation: Consider self-hosting Cost: 3 Benefit: 2

• Outcome: Successful iterable integration

– Recommendation: Treat this as a microservice, run on its own fleet

25

of 40 Puma workers, push work to Sidekiq and batch/flush writes.
Cost: N/A Benefit: N/A

26

	Outcome: Measure performance accurately
	Recommendation: Get environments out of service names in Datadog.
	Recommendation: Rename transactions terminating in Rack middleware
	Recommendation: Create a stack of a performance dashboard, monitors and SLOs
	Recommendation: Remove Sentry RUM and use Speedcurve or Datadog
	Recommendation: Implement a custom ``page is loaded'' event in RUM

	Outcome: 99.99% Uptime
	Recommendation: Move to SLA-based queues
	Recommendation: Autoscale Sidekiq based on queue latency
	Recommendation: Break up or iterable-ize your 10 longest running Sidekiq jobs.
	Recommendation: Merge the Schema Cache PR, aim to cut p95 request queue time
	Recommendation: Shed load using background job queues, either automatically or manually
	Recommendation: Set SQL database pool based on thread concurrency, controlled by a single, consistent ENV variable
	Recommendation: Move to BigRails connection management for Redis, cleanup what's stored in which Redis database.

	Outcome: Improve page load time
	Recommendation: Optimize 4 main web transactions.
	Recommendation: Profile allocations in V3::RegItemsController#index
	Recommendation: Profile allocations in V2::RegistryController
	Recommendation: Create a seed or ``registry pull'' process
	Recommendation: When viewing registry as a guest, fetchReservedRegItems should only fire once and it should not wait on page readiness.
	Recommendation: Pick a way forward with frontend: SPA or Turbo.
	Recommendation: Reduce JS bundle size

	Outcome: Reduce infrastructure spend by $299,000/year
	Recommendation: Set Sidekiq concurrency to 10 everywhere, CPU limit to 1, and memory limit to 4GB. ($10k/year)
	Recommendation: Autoscale Puma based on a combination of request queue latency and utilization/busyness. ($240k/yr)
	Recommendation: Set Puma to 10 workers on 8-core pods with 32 GB requests.
	Recommendation: Downsize the main database to r7g.8xlarge. Move read replication further down the backlog. (18k/year)
	Recommendation: Reduce memcached to 1 r7g.large node. ($16k/year)
	Recommendation: Slash Redis database sizes ($5k/yr)
	Recommendation: Remove the Sidekiq high-memory deployment by auditing Sidekiq memory use
	Recommendation: Multithread Puma to remove 15% of your web fleet. ($2,000/yr)
	Recommendation: Reconfigure the fleet to use m7i.2xlarge.

	Outcome: Reduce build times to less than 10 minutes.
	Recommendation: Consider self-hosting
	Recommendation: Get Journey tests off the critical path
	Recommendation: Keep Cranking That Parallelism, Baby

	Outcome: Successful iterable integration
	Recommendation: Treat this as a microservice, run on its own fleet of 40 Puma workers, push work to Sidekiq and batch/flush writes.

	Summary

