
Speedshop Tune: Mitchells

@nateberkopec

Prepared with care for Mitchells Stores

@nateberkopec

3/1/2025

Contents�

• Summary
• How To Use This Document
• Outcome: Reduce p75 LCP to 2.5 seconds for mobile devices, improve

Lighthouse Score from 25 to 75
– Recommendation: (Manually) mark LCP images with fetchprior-

ity=high
– Recommendation: Pare down Gotham and Didot styles “A & B” to
“A”. Remove Didot?

– Recommendation: Change CDN to Cloudflare or something else that
will convert to WebP easily

– Recommendation: Split all.css into 3 to 5 smaller files.
– Recommendation: Move cdn.mitchellstores.com to shop.mitchellstores.com
– Recommendation: Everything on the homepage which isn’t the hero

should be loading=lazy
– Recommendation: Manually walk through templates and mark im-

ages as loading=lazy.
• Outcome: Reduce CLS to 0.10 on all devices

– Recommendation: Homepage: manually add image heights
– Recommendation: On taxon pages (mens/womens), use aspect-ratio

to specify image height
– Recommendation: On product pages, fix massive pop when high-res

image gets loaded in.
– Recommendation: Enforce image heights through code, burndown.

• Outcome: Improve FCP to 1.8 seconds on all devices
– Recommendation: Async all Javascript
– Recommendation: First-party all fonts
– Recommendation: Async Apple Pay, Ahoy and Honeybadger tags

∗ Apple Pay
∗ Honeybadger
∗ Ahoy

1

https://github.com/nateberkopec

• Outcome: Reduce TTFB on Products and Taxons
– Recommendation: Fix the Cache multi-get on Products#show
– Recommendation: Remove (or batch?) ImageType#exists? and cor-

responding HTTP/HEAD requests.
– Recommendation: Fix Role#exists? “N+1”
– Recommendation: Fix ContentOption/*OptionMatch N+1 for

Taxon#show
∗ References/Bibliography
∗ Summary

Hello Mitchells!

Thanks for having me take a look at your application. I’ve identified several
areas for investment in performance. Some of the things I’ve discussed in this
report are actually just simple configuration changes you can make today that
will save you a lot of money. Others are more long-term projects and skills that
you can improve on over the next six months.

Summary

You told me that your mission was to improve your Web Vitals results.
The three web vitals are:

• Largest Contentful Paint (LCP): The time it takes for the largest
content element (almost always an image, but sometimes a text block) to
become visible in the viewport.

• Interaction to Next Paint (INP): Measures how quickly your page
responds to all user interactions - clicks, taps, and keyboard presses - by
monitoring the time from the interaction until the next frame is painted
on screen.

• Cumulative Layout Shift (CLS): A measure of how much movement
of page content occurs during page load.

You currently don’t have any issues with INP, so I’m ignoring it in the is report.
That is not unexepcted, because typically only extremely heavy SPA-style apps
have problems with INP. Your Javascript usage is quite light overall, so it’s not
surprising that your data here shows that this web vital is doing perfectly fine.

With the two remaining vitals, I found that:

• CLS has some minor but specific bugs that need to be fixed. You
have a few specific issues, mostly around image heights, that lead to some
layout shifting. You can probably fix the specific issues in a day or two,
and install a more permanent fix to prevent regression here in about a
week.

• LCP has a more wide and varied set of issues, but can proba-
bly still be mostly fixed on a short timeline. The highest impact
fixes mostly revolve around marking images as either “important” or “not
important”, which, much like your CLS stuff, can be done quickly and

2

manually for important pages like the homepage, and then fixed on a
more permanent basis for dynamic pages like taxons and products.

• There are a number of other web performance things that can be
addressed on longer horizons. Some of these are pretty big lifts but
with big payoffs, like moving your Javascript to async. Others are more
medium-sized, like paring down your webfont usage and serving them
firstparty instead of from Typekit.

To immediately and quickly get LCP and CLS back into the “green” zone, my
action plan would be to pluck the following recommendations out of this report:

1. Mark LCP image with fetchpriority=high on the homepage, product and
taxon pages.

2. On the homepage, manually mark all other images with loading=lazy.
3. Manually add image heights on the homepage
4. On mobile product pages, add image heights for the image display.

This workstream would probably take one person less than a week. I think it
would address ~80% of the problem, though admittedly in a very brittle way
(manually adding image heights means they’re no longer valid when the image
changes, for exampe). However, you can use that as a starting point to “backfill”
in a more long-term solution with the other recommendations here.

How To Use This Document

This document is organized at the top level by our desired Outcomes, which
are my goals for your performance improvements over the next six months.
Underneath that are specific Recommendations to achieve those outcomes.
Each Recommendation has an associated cost and benefit, rated subjectively
on a 5 point scale.Ratings are designed mostly to be relative to each other,
i.e. a 5 is always harder or more valuable than a 4, etc. Even cost/benefit
roughly means I think it’s a toss-up whether or not you should do it, while a
cost higher than the benefit rating means I think it’s not worth doing in the
near term future.

At the end of the document, I will present again the Outcomes and Recommen-
dations without commentary. This is intended to be a quick reference to help
you turn this document into action and assist during planning your sprints, etc.

I hope you enjoy this document and find it a useful guide for the next 6 months
of performance work on your application.

3

Nate Berkopec, owner of The Speedshop

4

Outcome: Reduce p75 LCP to 2.5 seconds for
mobile devices, improve Lighthouse Score from
25 to 75
In preparing this report, I used the CruX visualizer from Google. It’s important
to know that Web Vitals are collected from user telemetry in Chrome browsers,
and the data is published in the open for all URLs indexed by Google. While
having an in-house Lighthouse audit like you do is nice, it’s not reflective of the
final signal actually used by Google.

Looking through the CruX visualizer data for shop.mitchellstores.com, we can
get some important information:

1. Desktop LCP is fine (2.2 seconds), but mobile LCP is very high (3.7 sec-
onds average for the origin). So, we have more work to do for mobile
devices.

2. Mobile LCP is particularly bad on the homepage, where it can be 5 seconds
or more. Other pages, such as the men’s taxon or product pages (where
CRuX data is available) are not particularly bad.

3. ~50% of origin traffic is mobile, but 70% of traffic to the homepage is on
mobile. Are mobile users abandoning the site when they see the homepage
is slow to load?

Getting mobile LCP to below Google’s ‘green’ threshold of 2.5 seconds
p75 is therefore our goal. Our improvements here will inevitably also have some
impact on the desktop too, but since that’s already “green” we don’t have to
focus on it specifically.

One more point on web vitals that will become important: you’ll notice all the
CRuX data can be viewed for a specific URL or for an entire origin (domain).
For search rankings, the specific URL data is what matters. If there is not
enough URL-specific data, the origin is used instead (you’ll note for some URLs,
like say a specific product page, the ‘url’ tab disappears in CRuX visualizer).

Recommendation: (Manually) mark LCP images with
fetchpriority=high
Mitchells is basically a catalog site, so it’s not surprising that a majority of its
performance issues revolve around images. There are so many images! The
homepage loads 63 images, the men’s taxon page loads over 90, and the individ-
ual product page loads 75.

LCP is primarily an image-driven metric, because the LCP element is almost
always an image.

For debugging LCP issues, my workflow is usually:

1. Open DevTools. Click the “responsive” icon and change the view to a

5

phone, e.g. the iPhone 14 Pro Max. Under the network tab, I have a
custom preset that limits bandwidth to 20 mbps. Select that, and select
“disable cache”. Generally, I will adjust my network bandwidth preset
downward until I can replicate the numbers I’m seeing in CrUX. The “Fast
4G” preset got me close enough.

2. Go to the performance tab. Click the gear icon, and select a 4x CPU
slowdown. This will help simulate mobile devices. Hit CMD-SHIFT-E to
trigger a full page reload.

3. In the Performance timeline, look for the LCP timing. You can click it
and see which element is the LCP element. For everywhere I looked at
Mitchells, it’s an image.

4. Look at the image’s network request and work backwards. Why didn’t it
finish earlier?

Doing this on the homepage, you’ll see the LCP image is, helpfully, called
homepage-hero. However, it starts downloading rather late:

6

The “whisker” of the boxplot here notes when this image was first discovered
in the document and when it was “queued” to be downloaded. When the green
“box” starts is where we actually made the request. Light green is time spent
waiting for the first byte, and dark green is the time spent actually downloading

7

it.

You can also click the network request for a more detailed breakdown:

So, why are we spending 1 second queueing for this image?.

You can also see in the network information that this image’s priority was
medium.

HTTP/2 is based on the principle of one connection per origin. Therefore, we
might have several resources we want to load at the same time, so we need to
prioritize their ordering as to what we get first.

HTTP/2 implements a priority system where resources (like images, scripts,
CSS) can be assigned different priority levels (high, medium, low, or idle). When
a browser makes multiple requests, the server uses these priorities to determine
which resources to send first.

This particular image fetch tends to be “in-flight” while these requests are also
in flight:

1. A high priority request for all.js (360kb)
2. 2 or 3 other image requests, also medium, but for some reason it consis-

tently prefers downloading W-stripes.jpg, J-hearts.jpg and 1 or 2 other
random images first.

3. A handful of other JS requests.
4. A handful of high priority CSS requests.

That’s a lot going on and competing for bandwidth. We’ll address how to move
some of this other stuff around, but the easiest thing we can do is simply to tell
the browser that the LCP image is important!

The fetchpriority attribute on an HTTP element helps us do this.

I routinely use DevTools overrides to test the effect of simple HTML changes
like this one.

On my test setup using a 4x CPU slowdown and a network preset of 3 mbps,
my baseline is an LCP of about 4.5 seconds.

Adding fetchpriority=high to the hero element along decreased LCP by about
0.75 seconds. Look how it removed all of the time spent queueing:

8

https://developer.chrome.com/docs/devtools/overrides

This network graph makes the next steps pretty obvious: the image download
is taking too long now! How can we address this?

Cost: 0, Benefit: 4 A solid LCP bump with a ~15 character change. I’ve
already opened the PR.

Recommendation: Pare down Gotham and Didot styles “A
& B” to “A”. Remove Didot?
We now see that there’s a few requests happening in parallel with our image
request. One is for fonts. I audited what’s in the font file and what’s in the
page and noticed a few things.

I had Claude write me a script to check where these fonts were actually used.
I’ll reproduce that script here just so you can use the same thing:

// Find all elements using any Gotham or Didot font variant
const fontPatterns = ["Gotham", "Didot"];
const elementsWithFont = [];

9

// Check all elements on the page
Array.from(document.querySelectorAll("*")).forEach((el) => {

const style = window.getComputedStyle(el);
const fontFamily = style.fontFamily;

// Check if the font family matches any of our patterns
for (const pattern of fontPatterns) {

if (fontFamily.includes(pattern)) {
elementsWithFont.push({
element: el,
fontFamily: fontFamily,
text:
el.textContent.trim().substring(0, 50) +
(el.textContent.length > 50 ? "..." : ""),

});
break; // Stop checking patterns once we find a match

}
}

});

// Group results by font family
const groupedByFont = {};
elementsWithFont.forEach((item) => {

if (!groupedByFont[item.fontFamily]) {
groupedByFont[item.fontFamily] = [];

}
groupedByFont[item.fontFamily].push(item);

});

// Log results
if (Object.keys(groupedByFont).length === 0) {
console.log("No elements using Gotham or Didot font families found");

} else {
console.log("Found elements using Gotham or Didot font families:");

for (const [font, elements] of Object.entries(groupedByFont)) {
console.log(`\n Font Family: "${font}" (${elements.length} elements)`);
console.log("Sample elements:");
elements.slice(0, 5).forEach((item, index) => {
console.log(
` ${index + 1}. ${item.element.tagName.toLowerCase()}${
item.element.id ? "#" + item.element.id : ""

} - "${item.text}"`
);

});
}

10

}

The results for the homepage were that most elements used a font-family
of "Gotham A", "Gotham B". This is weird, because we’re specifying this
“Gotham B” fallback but it’s contained in the same file as Gotham A. I’m not
sure under what circumstances, if any, Gotham B could possibly be used. I
think you should remove the B variation from all fonts. I’m struggling to
see how doubling font download size could have any possibly good payoff.

In addition, we notice Didot is not used. I only see it in a few places in
the codebase. You should remove it from the default font bundle and
only include it on those pages, or put it in a different CSS file with a lower
fetchpriority.

Combining these recommendations should reduce the CSS for fonts on the home-
page by 75%, or about 200kb.

As an experiment, I like to block URLS in DevTools to see what the best possi-
ble impact of “fixing” the issue for perf might be. Blocking the Didot/Gotham
CSS improved LCP for me by an additional 500ms over the previous recommen-
dation.

Cost: 2, Benefit: 3 Removing Didot might be a bit of a pain, since it’s
used on some random static pages I think in a few spots. This will probably
only increase LCP by a bit, as you’re still going to spend a lot of bandwidth
downloading all.js.

Recommendation: Change CDN to Cloudflare or some-
thing else that will convert to WebP easily
The next easiest thing we can do is to make the image itself smaller. Today, the
hero image is about 200kB. However, it’s a JPEG.

You’re using Cloudfront as your CDN. More full-featured CDNs, such as Cloud-
flare or Cloudinary, will do some basic image optimization for you. You can
also do this with AWS Cloudfront, but it’s going to require some fancy DIY
stuff, like a Lambda to convert images on the fly. It’s far easier to just pay
someone to do this for you. I personally use Cloudflare here, as it will just
convert everything to WebP where possible.

Locally, I ran cwebp -q 80 input.jpg -o output.webp to try converting the
hero image to a WebP format image with a quality factor of 80. It reduced the
size to 137kb, a ~25% savings. 60kB may seem small, but your entire CSS is
about 90kB on the wire. So, we could try to eliminate 66% of your CSS, or just
figure out how to serve next-gen image formats. That’s going to be a lot easier.

To test the impact of this change, I did a local override with a ~140kb image I
found on a different area of the site. I was not able to create a measurable LCP
difference.

11

Cost: 2, Benefit: 3: 60kB is honest work. Changing your CDN to something
that converts to webP on-the-fly will improve image loads for everything across
the site all the time, which should have a benefit even if the benefit for the
homepage header is dubious. This suggests the “bandwidth stealing” effect of
all.js and all.css is higher than the effect of freeing up bandwidth with a smaller
hero.

Recommendation: Split all.css into 3 to 5 smaller files.
all.css gets the special highest fetch priority, because it’s render-blocking
CSS. This hampers our efforts to improve the download speed of the hero, be-
cause any extra bandwidth we free up gets “claimed” by the higher fetch priority
CSS.

This makes reducing the size of our CSS download a high priority. It’s currently
about 90 kB.

In DevTools, if you hit CMD-SHIFT-P and then type “coverage”, you’ll see an
option for “start instrumenting coverage and reload page”. This is essentially a
more detailed version of the analysis Lighthouse can do, and will show for each
JS and CSS file how much of it you actually used. The Sources view will now
always have red lines for lines of files which are not used.

For me, the homepage shows only 7.3% usage. So, 92.7% of your CSS is down-
loaded but not used.

Unfortunately the process here is extremely manual. Your pages are dynamic
(so we can’t just run a CSS purge step in the build), and there’s of course
tradeoffs between loading CSS beforehand versus only-as-needed.

I recommend aiming to split all.css into 3-5 files:

1. homepage.css
2. products.css
3. all.css, which more or less exists as it does today.

For the homepage and for product pages, remove all.css and replace it with a
specific CSS file, aiming for more like 50%+ usage.

You can create more “specific” CSS views for endpoints which you feel are worth
the squeeze re: how much traffic they get.

Cost: 3, Benefit: 3: It’s probably the most valuable ~45 kB you can remove
from the products and homepage loads.

Recommendation: Move cdn.mitchellstores.com to
shop.mitchellstores.com
You currently serve your Rails app and static assets from different domains.
This makes your site slightly slower to load because we have to establish a new

12

connection to the CDN domain.

You can see this if you flush all socket pools and then reload the page in DevTools.
To flush sockets, visit chrome://net-internals and click “sockets”, then click
“close” and then “flush”. For some reason I always have to hit it multiple times.

Then, reload the page in DevTools.

Moving cdn.mitchellstores.com to www.mitchellstores.com/assets would remove
this step completely, reducing LCP by 1 to 2 network round-trips for first time
users. This should knock another 1 to 300 milliseconds off your LCP, particularly
on mobile where network latency can be pretty high on cell networks.

Cost: 3, Benefit: 3

Recommendation: Everything on the homepage which isn’t
the hero should be loading=lazy
Looking at the network diagram, once you add fetchpriority=high to the
hero image, the page load gets split into two phases:

1. We download the CSS, JSS and hero image in parallel.
2. Once all those three steps are done, every other image downloads.

The reason is because everything in step 1 has a fetchpriority of high or highest,
and everything in step 2 is medium or lower. So, we don’t really need to optimize
step 2 further, because it happens after LCP.

However, we can still do additional things here to more accurately reflect the
priority of various images, even if I don’t think it will have a direct effect on
LCP. It’s sort of like a “backstop”, a second technique that also helps ensure an
optimal pageload. Pageloads aren’t deterministic (because network conditions
aren’t) and we can only really do detailed tests in Chrome, so multiple techniques
helps make sure our vision is actually achieved.

13

Since the homepage is relatively static, we can manually add the loading at-
tribute to any image which is not the hero set to a value of lazy. This has the
effect of not even starting the image download unless the image is visible. This
frees up bandwidth for other stuff.

Cost: 1, Benefit: 1 A 15-minute PR for the homepage.

Recommendation: Manually walk through templates and
mark images as loading=lazy.
Since the homepage is so important, I think it’s fine to go in and hand-optimize
that. However, your other dynamic layouts are perhaps a bit of a bigger lift.

Google doesn’t recommend putting loading=lazy on every image because you
might put it on an LCP image by accident. That’s good advice. However, 90%
of the images you put on a page, you know they’re never going to be the LCP
image.

Using “pages which receive lots of organic search traffic” as a guide, I would
burn down the images on these pages and mark as many as loading=lazy as I
could. You might find a way to come up with abstractions here to make this
easier.

Cost: 1, Benefit: 1 Just spend a few hours on it and move on.

Outcome: Reduce CLS to 0.10 on all devices
This is the second web vital you’re not doing so hot on.

Returning to the CrUX data for a moment, CLS is perfectly fine on the Origin
level for desktop viewers. On the homepage, however, it’s above 0.1 even for
those desktop-ers.

For mobile users, CLS on the homepage is actually quite good, although it’s
high (0.18) for the origin. Pages such as the taxon or popular product pages
show high CLS.

Recommendation: Homepage: manually add image heights
The homepage contributes a large amount to the origin score due to accounting
for 10-20% of total visits, so it’s worth special attention. It may seem strange
that CLS is so low for mobile but high for desktop here, which is the reverse for
the rest of the origin, but it actually makes perfect sense.

On desktop, the following load order occurs:

1. CSS and JS download simultaneously, and rather quickly, due to a high-
quality network connection.

14

2. As soon as the JS and CSS are downloaded, we layout the page for the
first time. This happens before the images have downloaded at all.

3. The images download and get added to the layout. Because the images
do not have pre-computed heights, they cause layouts shifts when added
in.

On mobile, you instead get:

1. CSS and JS download simultaneously. However, they’re pretty slow. In
addition, the JS has to actually execute, which, on mobile processors, takes
a long amount of time.

2. Because of the lengthened step 1 plus a smaller viewport, there’s less
opportunity for late-loading images to shift the layout around.

On the homepage specifically, you probably only need to added a dozen or so
heights to various images to eliminate the layout shifts.

Cost: 1, Benefit: 2: Slightly low benefit here because improving CLS on the
desktop isn’t really necessary, but this will take about an hour.

Recommendation: On taxon pages (mens/womens), use
aspect-ratio to specify image height
You have several full-width and 25-percent-width images here, which, when they
load in, cause a layout shift. I would add an ID here and specify the aspect
ratio of the image that’s going to load in:

[data-title="12215::mitchells-welcomes-a-new-store"] {
aspect-ratio: 16 / 9;
object-fit: cover;

}

The width is calculated from the CSS, and since it knows the aspect ratio, it
can also calculate the final display height. You’ll have to do this manually for
marketing images or write a new image tag helper and store image heights and
widths so you can insert that into markup dynamically.

Cost: 2, Benefit: 3 Taxon pages account for a lot of views, so this will need
to be addressed.

Recommendation: On product pages, fix massive pop when
high-res image gets loaded in.
On product pages on mobile, you see a huge CLS pop when the “large” product
image gets loaded in. I see two steps in the page load:

15

https://blog.eq8.eu/til/image-width-and-height-in-rails-activestorage.html
https://blog.eq8.eu/til/image-width-and-height-in-rails-activestorage.html

… and then:

16

This massive two-step pop means a huge layout shift event. This is on an a

17

very important layout, so I think it’s probably the most import CLS bug on the
whole site.

You know the aspect ratio of this image, so I think just adding an aspect-ratio
property here will fix this issue.

Cost: 2, Benefit: 4 Fix this one and I think you’ll greatly reduce CLS on the
origin.

Recommendation: Enforce image heights through code,
burndown.
All of your CLS bugs boil down to the lack of known image heights, either
through hard-coding the height property or through an aspect-ratio property.

It’s very difficult to predict what images are important to fix here in advance,
because whether or not an image causes a layout shift depends on what the par-
ent container element looks like, what order the image appears in the document,
and network conditions.

For that reason, I prefer logging this sort of event from real users, and then
burning down problems as reported from real users.

You already have New Relic in your stack, so if you pay for Browser Pro, you can
get all warning level logs. That means you can log layout shifts as they occur
and also what caused them. To identify the image, I would probably use the
image alt or the id/class of the parent container, rather than the URL (which
is a bunch of ActiveStorage gobbledygook).

Logging layout shifts as they occur is an exercise easily tackled by your favorite
intern Claude, but basically all you do is use the LayoutShift API to subscribe
to these events.. Once you get a shift, log important debug information and
NewRelic will pick it up. Aggregate it in NewRelic and “burn down” the list.

Cost: 3, Benefit: 4 A long term solution for finding and fixing specific CLS
issues.

Outcome: Improve FCP to 1.8 seconds on all de-
vices
First Contentful Paint is an important performance event, even if it’s not directly
a Web Vital. It contributes greatly to the perception of performance (by loading
anything earlier we perceive the load to be faster) and is a necessary precursor
step to LCP (we have to paint ANYTHING before we can paint SOMETHING!).

It’s also a big contributor to your Lighthouse score, which is an indirect goal
for us.

18

https://docs.newrelic.com/docs/browser/browser-monitoring/browser-pro-features/browser-logs/get-started/
https://docs.newrelic.com/docs/browser/browser-monitoring/browser-pro-features/browser-logs/get-started/
https://developer.mozilla.org/en-US/docs/Web/API/LayoutShift
https://developer.mozilla.org/en-US/docs/Web/API/LayoutShift

Recommendation: Async all Javascript
This is the highest-cost, highest-benefit recommendation in the entire report.

Currently, your JavaScript is loaded synchronously, which means that when the
browser encounters a script tag, it stops parsing the HTML until the script is
downloaded and executed. This blocks the render of the page.

The async attribute on script tags tells the browser to download the script in
parallel with HTML parsing. When the script finishes downloading, HTML
parsing is paused again while the script executes. This means:

1. Scripts load in parallel with other resources
2. Scripts execute as soon as they finish downloading
3. Scripts may execute in any order
4. Scripts don’t block page rendering while downloading

This would dramatically improve FCP because the browser wouldn’t have to
wait for script downloads before starting to render the page.

Your app uses jQuery and some other libraries that expect synchronous loading,
so this would require some careful refactoring to make sure scripts execute in
the correct order. You have several inline script tags littered around the page.
That doesn’t work in an async world. You’d need to:

1. Move all inline scripts to external files
2. Add dependency management (like ES modules)
3. Test thoroughly across all pages

However, there’s one reason to have hope: if you async your Javascript today
(via a DevTools override), the page doesn’t break, and still renders correctly
visually. That means you’re using Javascript in a limited way to install certain
behaviors, rather than render big chunks of the page. That means async-ing
JS is possible!

With async, combined with the other recommendations in this report, I was
able to get LCP (and FCP) down to 1 second. Note the waterfall here,
and how all.js loads after the hero:

19

The biggest thing will be moving inlined script tags out into external scripts.
There are probably 2-dozen plus behaviors installed on the homepage as inlined
script tags.

Cost: 4, Benefit: 5 It’s basically a re-architecture of your entire frontend
approach, but it would be worth several seconds of FCP and LCP.

Recommendation: First-party all fonts
Third-party serving of fonts has a number of disadvantages:

1. We have to connect to a new origin. See previously how that costs us a
couple hundred milliseconds.

2. It helps the browser to multiplex bandwidth more efficiently when it’s
across one connection on one domain.

3. We can subset the font.

I used to be pretty “high” on 3rd-partying fonts, and particularly I think Google
Fonts is still quite good (since it will even subset for you), but typekit is pretty
bad. It requires a new origin or two, and a couple of redirects, in order to just
get the fonts downloaded. It’s a slow design. You can simply buy Gotham and
Didot for a couple hundred bucks and serve this yourself from your own domain,
which will move up font rendering by a couple hundred milliseconds.

Cost: 3, Benefit: 2 Probably a pain to get off of a third party here, the
benefit is admittedly limited.

20

Recommendation: Async Apple Pay, Ahoy and Honeybad-
ger tags
You have three third party script tags that are blocking render, which could be
async’d instead. They are very small and so have limited impact on page render
(certainly, basically zero when all.js is considered!).

Apple Pay

This is just a normal script tag. You’re not using any Apple APIs in internal
script tags, and this appears after all.js, so I think this is just to get the Apple
Pay button to show up? If so, just adding an async attribute here should Just
Work.

Honeybadger

You define your beforeNotify hook as an internal script tag - simply change
that around a bit to call only after the script is loaded:

<script src="//js.honeybadger.io/v6.10/honeybadger.min.js" async onload="initHoneybadger()"></script>
<script>
function initHoneybadger() {
Honeybadger.configure({
// ...

});

Honeybadger.beforeNotify((notice) => {
// ...

});
}

</script>

Ahoy

This one is harder because there are numerous inline script tags in the document
which expect Ahoy to be available, so async-ing this is blocked on removing those
and moving to external async scripts first.

Cost: 3, Benefit: 1: The scripts here are so small compared to the tasks
before you with all.js that it’s probably not worth considering at the moment.

Outcome: Reduce TTFB on Products and Tax-
ons
As a less important goal, you should try to reduce the TTFB (and, therefore,
the response time) of the Taxons and Products show actions. The p95 on these
is sometimes high (>500ms), so we could save a few hundred ms on all our

21

various metrics by addressing it through reduced response time. There’s a few
easy wins here.

Recommendation: Fix the Cache multi-get on Prod-
ucts#show
For NewRelic, my process is basically:

• Go to the transactions tab. Go the the “full view” list, then sort by
time consumed and look at the p95 for each as I go down the list. If a
controller action has more than 1% of total time, and a p95 over 500ms,
it’s a problem and we can fix it.

• Go to the traces tab on the left. Look for the controller again. Click it,
then look for recent traces whose duration is close to the p95.

• Look at 3 to 5 traces, try to find patterns for why traces are this slow.

In this case, ProductsController#show meets the first criteria, and looking at
traces showed a clear pattern:

22

…way too many cache round-trips. For reference, this was /products/1421776-valentino-garavani-belts.

The solution here is to wrap these up as multi-gets. Rails cache partials can
make this incredibly easy:

In your view
<%= render(partial: "product", collection: @products, cached: true) %>

This will generate a single multi-get request to your cache store instead of indi-

23

vidual gets for each product.

I find this is a lot easier than trying to manage your own multi-fetches.

To find the exact location of this redis cache get, I would use rack-mini-profiler
in production (which you already have set up, hoo-ra!)

Cost: 2, Benefit: 3: Would reduce p95 by a lot on this page.

Recommendation: Remove (or batch?) ImageType#exists?
and corresponding HTTP/HEAD requests.
Also in ProductsController#show requests, I noticed a slow loop which ends
up making lots of HEAD requests to S3 checking for the existence of a file:

This strikes me as a bit weird, because I’m struggling to imagine the failure
case. Are files frequently not present on S3 when they should be? I think

24

this is probably the result of naively checking for the presence of an image or
attachement without realizing that it costs 10-15 ms to do so.

Use rack-mini-profiler and flamegraph mode to find and nuke the sources
of these requests. You don’t need to be making requests to S3 in-line during a
web request.

Cost: 1, Benefit: 2. There aren’t that many of these (it’s per product image
I assume) but the fix is probably straightforward.

Recommendation: Fix Role#exists? “N+1”
At the beginning of almost every trace, there are 5 to 10 Spree::Role#exists?
checks in a row. This is the result of doing something like this:

if user.is_admin?
...
elsif user.is_manager?
...
elsif #...

This is a super common problem in user authorization. The thing is that almost
every user will have a very small set of spree_role_users, so making a query
to check just for the existence of a single one is a bit of a waste when you could
have loaded all roles into memory.

The core reason is the implementation of has_spree_role?

def has_spree_role?(role_name)
spree_roles.exists?(name: role_name)

end

… which should, in my opinion, be:

def has_spree_role?(role_name)
spree_roles.any? { |role| role.name == role_name }

end

…this forces the load of the spree_roles association completely, and subsequent
requests will use that memoized association instead.

Again, this is a benefit because:

1. This data is almost always queried more than once per request.
2. Users have a limited number of spree_roles, and it costs about the same

to load 1 as it does 20.

Cost: 1, Benefit: 1 Excessive SQL added on every request is a pet peeve of
mine.

25

Recommendation: Fix ContentOption/*OptionMatch
N+1 for Taxon#show
Taxon traces have the following funny N+1 pattern:

26

27

The queries here are very simple, so this is almost certainly fixable with preload,
at least the ScoreOptionMatch and DefaultOptionMatch.

The queries for ContentOption are a little more interesting and instructive:

SELECT COUNT(*) FROM (SELECT DISTINCT "content_options".* FROM "content_options" LEFT OUTER JOIN default_option_matches ON content_options.id = default_option_matches.content_option_id LEFT OUTER JOIN taxon_option_matches ON content_options.id = taxon_option_matches.content_option_id LEFT OUTER JOIN score_option_matches ON content_options.id = score_option_matches.content_option_id LEFT OUTER JOIN store_option_matches ON content_options.id = store_option_matches.content_option_id WHERE "content_options"."content_element_id" = $? AND (default_option_matches.default = ? OR ((taxon_option_matches.content_option_id IS ? OR taxon_option_matches.taxon_id = ?) AND (score_option_matches.content_option_id IS ? OR (score_option_matches.score_type = ? AND score_option_matches.score = ?) OR (score_option_matches.score_type = ? AND score_option_matches.score = ?) OR (score_option_matches.score_type = ? AND score_option_matches.score = ?) OR (score_option_matches.score_type = ? AND score_option_matches.score = ?) OR (score_option_matches.score_type = ? AND score_option_matches.score = ?) OR (score_option_matches.score_type = ? AND score_option_matches.score = ?) OR (score_option_matches.score_type = ? AND score_option_matches.score = ?)) AND (store_option_matches.content_option_id IS ? OR store_option_matches.stock_location_id = ?))) ORDER BY "content_options"."created_at" ASC) subquery_for_count

…followed by

SELECT DISTINCT "content_options".* FROM "content_options" LEFT OUTER JOIN default_option_matches ON content_options.id = default_option_matches.content_option_id LEFT OUTER JOIN taxon_option_matches ON content_options.id = taxon_option_matches.content_option_id LEFT OUTER JOIN score_option_matches ON content_options.id = score_option_matches.content_option_id LEFT OUTER JOIN store_option_matches ON content_options.id = store_option_matches.content_option_id WHERE "content_options"."content_element_id" = $? AND (default_option_matches.default = ? OR ((taxon_option_matches.content_option_id IS ? OR taxon_option_matches.taxon_id = ?) AND (score_option_matches.content_option_id IS ? OR (score_option_matches.score_type = ? AND score_option_matches.score = ?) OR (score_option_matches.score_type = ? AND score_option_matches.score = ?) OR (score_option_matches.score_type = ? AND score_option_matches.score = ?) OR (score_option_matches.score_type = ? AND score_option_matches.score = ?) OR (score_option_matches.score_type = ? AND score_option_matches.score = ?) OR (score_option_matches.score_type = ? AND score_option_matches.score = ?) OR (score_option_matches.score_type = ? AND score_option_matches.score = ?)) AND (store_option_matches.content_option_id IS ? OR store_option_matches.stock_location_id = ?))) AND "default_option_matches"."default" = $? ORDER BY "content_options"."created_at" ASC LIMIT $?

So, that tells me that you’re unnecessarily counting before just loading the entire
relation. Remove the count query and just count the records returned by the
second query.

Use rack-mini-profiler to find the source location of all these and remove them.

Cost: 2, Benefit: 2 Good old N+1 squash.

References/Bibliography

• Roberts, Harry. “Core Web Vitals for Search Engine Optimisation.” CSS
Wizardry, July 3, 2023. https://csswizardry.com/2023/07/core-web-
vitals-for-search-engine-optimisation/.

• Google. “Chrome UX Report.” Chrome UX Report Dashboard. Accessed
March 10, 2025. https://cruxvis.withgoogle.com/#/.

• Eq8. “Image Width and Height in Rails ActiveStorage.” Eq8 Blog, March
23, 2021. https://blog.eq8.eu/til/image-width-and-height-in-rails-
activestorage.html.

• Google. “Overrides.” Chrome for Developers. Accessed March 10, 2025.
https://developer.chrome.com/docs/devtools/overrides.

• Argyle, Katie Hempenius, and Barry Pollard. “Optimize resource loading
with the fetchpriority attribute.” web.dev, January 31, 2024. Accessed
March 10, 2025. https://web.dev/articles/fetch-priority?hl=en#browser
_priority_and_fetchpriority.

Summary

• Outcome: Reduce p75 LCP to 2.5 seconds for mobile devices, improve
Lighthouse Score from 25 to 75

– Recommendation: (Manually) mark LCP images with fetchprior-
ity=high Cost: 0 Benefit: 4

– Recommendation: Change CDN to Cloudflare or something else that
will convert to WebP easily Cost: 2 Benefit: 3

– Recommendation: Pare down Gotham and Didot styles “A & B” to
“A”. Remove Didot? Cost: 2 Benefit: 3

– Recommendation: Manually walk through templates and mark im-
ages as loading=lazy. Cost: 1 Benefit: 1

– Recommendation: Everything on the homepage which isn’t the hero
should be loading=lazy Cost: 1 Benefit: 1

28

https://csswizardry.com/2023/07/core-web-vitals-for-search-engine-optimisation/
https://csswizardry.com/2023/07/core-web-vitals-for-search-engine-optimisation/
https://cruxvis.withgoogle.com/#/
https://blog.eq8.eu/til/image-width-and-height-in-rails-activestorage.html
https://blog.eq8.eu/til/image-width-and-height-in-rails-activestorage.html
https://developer.chrome.com/docs/devtools/overrides
https://web.dev/articles/fetch-priority?hl=en#browser_priority_and_fetchpriority
https://web.dev/articles/fetch-priority?hl=en#browser_priority_and_fetchpriority

– Recommendation: Move cdn.mitchellstores.com to shop.mitchellstores.com
Cost: 3 Benefit: 3

– Recommendation: Split all.css into 3 to 5 smaller files. Cost: 3
Benefit: 3

• Outcome: Reduce CLS to 0.10 on all devices
– Recommendation: On product pages, fix massive pop when high-res

image gets loaded in. Cost: 2 Benefit: 4
– Recommendation: Enforce image heights through code, burndown.

Cost: 3 Benefit: 4
– Recommendation: On taxon pages (mens/womens), use aspect-ratio

to specify image height Cost: 2 Benefit: 3
– Recommendation: Homepage: manually add image heights Cost: 1

Benefit: 2
• Outcome: Improve FCP to 1.8 seconds on all devices

– Recommendation: Async all Javascript Cost: 4 Benefit: 5
– Recommendation: First-party all fonts Cost: 3 Benefit: 2
– Recommendation: Async Apple Pay, Ahoy and Honeybadger tags

Cost: 3 Benefit: 1
• Outcome: Reduce TTFB on Products and Taxons

– Recommendation: Remove (or batch?) ImageType#exists? and cor-
responding HTTP/HEAD requests. Cost: 1 Benefit: 2

– Recommendation: Fix the Cache multi-get on Products#show Cost:
2 Benefit: 3

– Recommendation: Fix ContentOption/*OptionMatch N+1 for
Taxon#show Cost: 2 Benefit: 2

– Recommendation: Fix Role#exists? “N+1” Cost: 1 Benefit: 1

29

	Summary
	How To Use This Document
	Outcome: Reduce p75 LCP to 2.5 seconds for mobile devices, improve Lighthouse Score from 25 to 75
	Recommendation: (Manually) mark LCP images with fetchpriority=high
	Recommendation: Pare down Gotham and Didot styles ``A & B'' to ``A''. Remove Didot?
	Recommendation: Change CDN to Cloudflare or something else that will convert to WebP easily
	Recommendation: Split all.css into 3 to 5 smaller files.
	Recommendation: Move cdn.mitchellstores.com to shop.mitchellstores.com
	Recommendation: Everything on the homepage which isn't the hero should be loading=lazy
	Recommendation: Manually walk through templates and mark images as loading=lazy.

	Outcome: Reduce CLS to 0.10 on all devices
	Recommendation: Homepage: manually add image heights
	Recommendation: On taxon pages (mens/womens), use aspect-ratio to specify image height
	Recommendation: On product pages, fix massive pop when high-res image gets loaded in.
	Recommendation: Enforce image heights through code, burndown.

	Outcome: Improve FCP to 1.8 seconds on all devices
	Recommendation: Async all Javascript
	Recommendation: First-party all fonts
	Recommendation: Async Apple Pay, Ahoy and Honeybadger tags
	Apple Pay
	Honeybadger
	Ahoy

	Outcome: Reduce TTFB on Products and Taxons
	Recommendation: Fix the Cache multi-get on Products#show
	Recommendation: Remove (or batch?) ImageType#exists? and corresponding HTTP/HEAD requests.
	Recommendation: Fix Role#exists? ``N+1''
	Recommendation: Fix ContentOption/*OptionMatch N+1 for Taxon#show
	References/Bibliography
	Summary

