
Key Metrics
Here is my suggestion for an actionable and measurable set of goals, based on
the priorities you have explained to me.

1. Overprovisioning: Reduce vCPU and memory allocated in Fargate by
25% (175 vCPU, 500 GiB, $6500 USD per month in vCPU, $2000 USD
per month in memory) to 500 vCPU and 1.5 TB.

2. Quality of Service: 99.9% SLO uptime on web request queue time of p95
10ms (100ms for core and any other customer-facing services), 99.9% SLO
uptime of 4 SLO based queues (within_0_seconds, within_5_minutes,
within_1_hour, within_24_hours) in Sidekiq for all services.

3. Uptime: 99.99% uptime based (ping) SLO for web services.

I have the following questions remaining to resolve on key metrics:

1. What is the right number of 9s for 2 and 3?
2. Can we get accurate metrics for CPU and memory allocated by Fargate in

Datadog so we can commit and track caps? Sidekiq total thread count?
3. How will we roll out the infrastructure changes needed for #2 to the

2-dozen-or-so apps that will start meeting these standards? What have
you already done here?

4. How do you want to establish a work cadence? Who will perform the work
and how will it be tracked?

Overprovisioning
Here are the details of how to accomplish the Overprovisioning goal.

Deploy and tune application auto scaling
• We need to capture and publish request queue time to CloudWatch so that

a scaling policy can use it. What is published today?
• Core and other customer facing services (i.e., services which are NOT

called by other services) can have a 100ms p95 target for request queue
time, but any internal service this needs to be lower (10ms suggested)

• End goal: all services (web and sidekiq) autoscale using queue times.

Change task sizing
• Core needs 12-75 Puma processes during the average day, so tasks of

(WEB_CONCURRENCY) 12 would work well
• Core sidekiq should be 1-2 processes, but it currently is not due to bad sleep

code in CreateWebhookProcessesWorker. It is currently > 30 processes
• You have many services, but most should be 1 pod each 99% of the time

on web/sidekiq. There will inevitably a lot of waste caused by this (versus
a monolith).

1

– Web: 1x4proc, so probably 4 cpu/8gb pods
– Worker: 2 task types, 1 process each. One task type for each of the

low/high SLOs, 0.5 CPU each request I should think. High SLOs can
scale to zero

• End goal: All services use a “standard” task size and format, except for
Core. All services use SLO queues.

Quality of Service
These are the details about how to accomplish the Quality of Service goal.

SLOs and monitors
• p95 100ms request queue time for core, 10ms for any subservice
• Deployed via Terraform
• A request queue time monitor covers both full outage and partial (brownout)

outage conditions
• End goal: each service has Datadog SLOs and monitors for queue time

(web/sidekiq)

Migrate to SLO queues
• On most services, these will still be served by two process types, maybe

assign half a CPU to each (1 hour SLO)
• Use four queues, based on SLO of time spent in the queue:

– within_0_seconds
– within_5_minutes
– within_1_hour
– within_24_hours

• End goal: each service uses SLO queues for Sidekiq

Puma and Sidekiq threadpool tuning
• Let’s install gvl metrics middleware to get an idea of what the correct thread

count will be for various services. Speedshop will make recommendations
for thread count tuning based on this (and you will hopefully get access to
our auto-tuning beta soon)

• It’s possible that the “high SLO” task type should be 1 thread by default,
purely to manage concurrency and err on the side of safety rather than
throughput.

• End goal: Each service is running 3 threads on web and 5 on Sidekiq “low
SLO”/1 on “High SLO” (1hr+) OR to a number “tuned” by speedshop.

2

Puma and Sidekiq CPU/memory container sizing
• We should deploy jemalloc to all services, this alone will probably cut

memory allocation in half.
• End goal: All services have jemalloc (can we enforce via a Datadog Service

Check?)

Needs a standardized gem/approach for all services
• Request queue time/sidekiq queue time -> Application Auto Scaling
• SLO queues for Sidekiq
• jemalloc in Dockerfile
• Terraform: SLOs and monitors (Uptime and Quality of Service)
• End goal: There is a single place where we can check compliance of all

these points for every service, and a set of tools (or one tool) that is used
by all services.

Uptime
This goal is somewhat overlapping with the previous, but it does have some
specific tasks.

Set up SLOs and monitors
• Based on Synthetics tests/pings
• Set up in Terraform
• End goal: Every service has a monitor and SLO

Process improvements
• Add me to future postmortems. The causes of these outages will be quite

wide and difficult to predict, so probably my best involvement here will
just be to get in on your postmortems.

Worker optimization
• Reduce Sidekiq worker concurrency to minimum levels necessary

– SLO queues will help with this.
• End goal: Total Sidekiq thread count across the infrastructure reduced by

50%. I’ll create a Datadog chart/notebook for tracking (don’t have the
exact number)

3

	Key Metrics
	Overprovisioning
	Deploy and tune application auto scaling
	Change task sizing

	Quality of Service
	SLOs and monitors
	Migrate to SLO queues
	Puma and Sidekiq threadpool tuning
	Puma and Sidekiq CPU/memory container sizing
	Needs a standardized gem/approach for all services

	Uptime
	Set up SLOs and monitors
	Process improvements
	Worker optimization

