
Hello Beyond,

Thanks for having me do a front-end audit of ADR.

My lens for frontend performance work on consumer-facing sites like ADR is
usually the Core Web Vitals. This is partly because they’re an SEO ranking
factor, which of course we’re trying to improve, but also because they’re just a
good list of perf metrics that make sense.

As a quick recap, the Core Web Vitals are:

• Largest Contentful Paint (LCP): Measures loading performance. The
clock starts when the user initiates navigation and stops when the largest
image or text block visible in the viewport finishes rendering. LCP should
occur within 2.5 seconds.

• Interaction to Next Paint (INP): Measures interactivity. The clock
starts when the user clicks, taps, or presses a key and stops when the
browser paints the next frame showing visual feedback. Common blockers
here are going to be Javascript handlers attached to events. INP is the
worst interaction latency observed during the page visit. Pages should
have an INP of 200 milliseconds or less.

• Cumulative Layout Shift (CLS): Measures visual stability. Pages
should maintain a CLS of 0.1 or less. You don’t have any issues with this
vital on any page, so I’m going to ignore it for the rest of the report.

Overall, my impressions are:

• The site is already pretty fast. The homepage is green for all Google
Core Web Vitals (although slightly high for INP). The origin in total (so,
not just the homepage but all /* pages under the domain) has a “yellow”
slightly high INP at 254ms.

• There is a lot of low-hanging fruit. There are a lot of changes we
can make that would take an hour or two, not require any fundamental
rethinking of the site, and create a measurable improvement.

• There are a few pages with unique issues. There are a handful of
pages with severe problems with INP and/or LCP.

So, my recommended plan is to quickly do the high benefit, low cost work
and fix the handful of severe issues on “deeper in the funnel” pages.

I set up a test harness to test most of the various things I recommended in this
report. I’ll be citing these results again at the end, but I’d like to direct your
attention to the final optimized line, which combines all of the optimizations
at once: a 42 percent improvement in LCP!

Variant LCP (ms) FCP (ms) TBT (ms) LCP Change
base 2536 2536 9.5 –
no-bbb-logo 2345 2345 1 -191ms (-7.5%)
no-optimizely 1953 1822 0 -583ms (-23%)

1

https://web.dev/articles/vitals
https://web.dev/articles/lcp
https://web.dev/articles/inp
https://web.dev/articles/cls

Variant LCP (ms) FCP (ms) TBT (ms) LCP Change
webp-images 2240 2240 3 -296ms (-12%)
preload-hero 2380 2380 2.5 -156ms (-6%)
optimized-images 2175 2175 0 -361ms (-14%)
lazy-loading 1894 1894 0 -642ms (-25%)
no-third-party-js 1844 1013 0 -692ms (-27%)
no-webfonts 2503 2503 1 -33ms (-1%)
critical-css 2546 2546 5 +10ms (0%)
optimized 1462 998 0 -1074ms (-42%)

We can measure progress with the following goals:

1. Reduce LCP, which currently sits at around 2.5 seconds. A 20% reduc-
tion to 2.0 seconds seems highly attainable.

2. Reduce INP to nearly zero. This is a Rails app, not an SPA! INP
should not be a bottleneck here.

I use CruxVis, Google’s public dataset of Core Web Vitals, collected by billions
of Chrome browsers all phoning home (yay!). I generally trust this data the
most, because it’s the widest dataset, collected across the widest possible set of
users.

The report for the homepage shows that LCP and INP are fine but “borderline”.

Homepage CrUX report{height=400px}

The report for the entire origin shows higher (yellow) INP, which of course
means some page(s) other than the homepage are suffering from poor INP.

Origin CrUX report{height=400px}

For more, let’s look at our own Datadog RUM information. Why are we getting
higher INPs? On what pages?

Recommendations
Let’s move on to what I think specifically should be changed.

I tested a large number of these recommendations using my own custom test
benchmark setup. Essentially I created a copy of ADR locally, used toxiproxy
to replicate production network conditions, and then created a baseline whose
performance more or less matches prod. Then, I can apply variants (versions of
the suggestions I make below) and compare them to the baseline.

Code for the benchmark project is here.

2

https://cruxvis.withgoogle.com/#/?view=cwvsummary&url=https%3A%2F%2Fwww.accrediteddebtrelief.com%2F&identifier=url&device=PHONE&periodStart=0&periodEnd=-1&display=p75s
https://cruxvis.withgoogle.com/#/?view=cwvsummary&url=https%3A%2F%2Fwww.accrediteddebtrelief.com%2F&identifier=origin&device=PHONE&periodStart=0&periodEnd=-1&display=p75s
https://github.com/speedshop/adrbench

Make the BBB logo non-render-blocking

As you’re probably aware, script tags with an external src attribute have a big
impact on performance, because they block the main HTML parser until they
are downloaded and completely executed.

You currently have the following script tag on the homepage:

<script src="https://seal-chicago.bbb.org/inc/legacy.js" type="text/javascript"></script>

This adds the following steps to the critical path:

1. Connect to bbb.org. This requires DNS lookup and setting up a new SSL
connection, so 2-3 roundtrips.

2. Download legacy.js.
3. Execute legacy.js.

I’m a bit limited in my testing because I’m on the other side of the ocean from
the US, so my latency is artificially high due to the extra ~200ms to get across
the ocean, but this is easily ~100-150ms.

It’s also a critical single point of failure. If bbb.org “browns out” and sud-
denly gets very slow, you would end up seeing your own site’s performance
impacted.

In my local benchmark, removing the BBB logo completely reduced LCP by
200ms or 7.5%:

Variant LCP (ms) FCP (ms) TBT (ms) LCP Change
base 2536 2536 9.5 –
no-bbb-logo 2345 2345 1 -191ms (-7.5%)

Your alternatives are:

1. Remove the BBB logo completely.
2. Make the JS async or defer - I’m not familiar enough with how their

snippet works to know if this is possible.

Both would equally solve the performance and reliability/SPOF issue.

Disable Optimizely when not in use

I understand why people use third-party A/B testing frameworks. However,
they all have a fundamental performance flaw:

They have to hide the site until their JavaScript loads and executes and applies
any variation.

This inevitably delays page load because now the 3rd party’s domain, JS down-
load and JS execution must be on the critical path.

3

https://en.wikipedia.org/wiki/Critical_path_method

In my experience, however, most teams are simply not aware of the cost of these
tools and end up leaving them installed without actually actively testing any
variations (or they’re still testing old variations whose impact was obvious long
ago).

I recommend disabling Optimizely if it is not in active use.

Removing optimizely produced one of the largest improvements in LCP that I
saw through my entire benchmark test:

Variant LCP (ms) FCP (ms) TBT (ms) LCP Change
base 2536 2536 9.5 –
no-optimizely 1953 1822 0 -583ms (-23%)

Reduce total image weight on homepage to 1MB

The homepage features significant amounts of image weight: 5.5mb of the to-
tal 8.4MB on the wire is images alone. Two of these are jpegs (1.5mb), the
remainder are PNGs.

1. We can replace all PNGs with a lossy format to save ~50% or more.
2. Images which have a maximum width in the viewport can be served as

smaller versions (see “do image transformation with Cloudflare” below).

I don’t see a reason why we can’t get total image weight below 1MB using those
two techniques.

The first part, just using the optimal codec, is called “Polish” on your Cloudflare
zone. You can flip this on in Speed -> Settings -> Image Optimizations ->
Polish. I use “lossy” because IMO the burden of proof for requiring “lossless”
is on the designer… flip it, and if they didn’t notice, you didn’t need lossless
compression.

In my own local testing, converting all images to webP at quality 60 reduced
total image payload size by 90% by itself, so I know it’s possible.

Simply uploading the main header image (3MB png) to Cloudflare and serving it
from there compressed the image from 3MB to 236kb. Then, if we let Cloudflare
do transformation/image format negotiation on its own, it will use the AVIF
format, further reducing size to 67kb. So that’s a reduction of 97%!

This isn’t limited to the PNGs. The “annemie-thumbnail” jpg, originally 970kb,
gets compressed to 143kb on Cloudflare, but the AVIF version is just 97.9kb.

Second, on the same page, we can enable transformations. Enabling transfor-
mations for a Cloudflare zone is an easy flip of a switch. Once you do that, we
can dynamically do height and width changes.

Additionally, many of your images aren’t actually completely displayed. For
example, it’ll be a 16:9 image and you’ll only display a square crop of it, hiding

4

https://developers.cloudflare.com/images/get-started/#enable-transformations-on-your-zone
https://developers.cloudflare.com/images/get-started/#enable-transformations-on-your-zone

the overflow. Additionally, many images are served over-resolution: you’ll serve
a 1000px+ image at 450px.

The annemie thumbnail from earlier has both issues. Because the max width of
the content column is set in CSS and this image is displayed in a half-column,
its maximum width/height is 450px. You can change that image dynamically
to that height/width like this:

https://imagedelivery.net/wvR-Z9aLpqnVxZGaCe4qLg/37cea30d-13ce-4fec-e3d9-b868603a3600/w=450,h=450

There are additional parameters for centering/zoom etc if needed. This URL
serves a 13KB AVIF, down 98.5% from the original.

In my testing, optimizing images reduced LCP by 15%.

Variant LCP (ms) FCP (ms) TBT (ms) LCP Change
base 2536 2536 9.5 –
optimized-images 2175 2175 0 -361ms (-14%)

The over-resolution image problem is particularly bad on mobile. In a portrait
orientation, the screen width itself isn’t even over 500px, and yet you’re serving
a 750px wide hero image!

After Polish is on, I would take a look at any image that still is over ~100kb
and use dynamic variants on it to transform it to a smaller width.

For the homepage LCP image, set fetchpriority=high.

There are ~30-40 images on the homepage. There is only one that’s really
important (both for the user, but also for LCP): that “annemie” hero image.

By default, browsers discover images only after parsing the HTML and building
the render tree. Even then, they must prioritize dozens of resources competing
for bandwidth. The fetchpriority="high" attribute tells the browser: “This
image matters more than others—start downloading it immediately.”

Without this hint, the browser treats all images equally and may delay your hero
image while it fetches less important resources. With fetchpriority="high",
the browser elevates the image’s network priority, often starting the download
before it would otherwise.

Usage is simple:

In my testing, doing this by itself reduced LCP by 6%:

5

https://web.dev/articles/critical-rendering-path/render-tree-construction

Variant LCP (ms) FCP (ms) TBT (ms) LCP Change
base 2536 2536 9.5 –
fetchpriority-hero 2380 2380 2.5 -156ms (-6%)

Remove Set-Cookie from image responses to allow Cloudflare to cache
images

When I was going through the network data, I noticed every image had a
cf-cache-status header value of DYNAMIC, which means it’s not being HTTP
cached at all.

That’s less than ideal because what it means is that the image is being served
directly from the origin, aka your Rails app. This is adding additional latency
because if it was cache status hit, that means that it would be served directly
from the Cloudflare server that’s closest to me, rather than having to go all the
way to your origin. I’m in Japan, but even in the US, this is shaving off 50-75
milliseconds for a cache hit. And it also takes load off of your server as a little
added bonus.

Since image formats are usually cached by default, I think what’s happening
here is the set-cookie headers I’m seeing attached to every image response:

set-cookie
AWSALBTG=lCXVUgeWYMwRjs1zj1CaLNOPeM5KR0B07dJstHDZE80BaRwiSpg0F0FFhT8iZzMD7MCRh9anMrldCSVDF9a3hgZMabdIsFgfuOwq4quX1aSr2Vj8w0w90gqKJBxmhe11TZwKLa66IoPp82gBs5i8/ynIfRSV3ZtVhJ7eE+IeTVGXsrWvbvk=; Expires=Mon, 15 Dec 2025 03:55:51 GMT; Path=/
set-cookie
AWSALBTGCORS=lCXVUgeWYMwRjs1zj1CaLNOPeM5KR0B07dJstHDZE80BaRwiSpg0F0FFhT8iZzMD7MCRh9anMrldCSVDF9a3hgZMabdIsFgfuOwq4quX1aSr2Vj8w0w90gqKJBxmhe11TZwKLa66IoPp82gBs5i8/ynIfRSV3ZtVhJ7eE+IeTVGXsrWvbvk=; Expires=Mon, 15 Dec 2025 03:55:51 GMT; Path=/; SameSite=None; Secure
set-cookie
AWSALB=QKKI0qOTJmeDLTY9nwabcyjTw8V1m31DE+fXQrPMX1eBRQaVqhj9OPJTLk4byWGmCE0llXdBbL9QsTURJ39PboiEcxQ+kPfgJghrQhb1luSSRZsyNoHRsYGSgWfn; Expires=Mon, 15 Dec 2025 03:55:51 GMT; Path=/
set-cookie
AWSALBCORS=QKKI0qOTJmeDLTY9nwabcyjTw8V1m31DE+fXQrPMX1eBRQaVqhj9OPJTLk4byWGmCE0llXdBbL9QsTURJ39PboiEcxQ+kPfgJghrQhb1luSSRZsyNoHRsYGSgWfn; Expires=Mon, 15 Dec 2025 03:55:51 GMT; Path=/; SameSite=None; Secure

This looks like Sticky Session headers for ALB. I don’t know why you’d have
sticky sessions on anyway, so it’s potentially something that was turned on
without a lot of thought and just needs to be flipped off?

You could also configure cloudflare to just strip Set-Cookie headers off of images,
using a Cache or Transform rule.

Lazy load all images except the hero

The homepage has ~38 images. On my desktop, 10 of those are visible in the
viewport initially. On mobile, that decreases to 5.

Lazy loading these days is incredibly easy. The loading=lazy attribute is
supported by 94% of users, and since it’s just progressive enhancement, there is
no visible regression for users who don’t support it.

The only downside that I would say exists is the potential for a “Flash of Un-
styled Content”-like behavior as the image loads in when it appears in the

6

https://caniuse.com/loading-lazy-attr

viewport for the first time. There can also be layout shifts which, while they
always existed, were previously less visible because they all happened during
page load rather than later on after LCP.

You can apply loading=lazy to every image except the page hero. Applying this
to the hero, even when the hero is visible, potentially slows down LCP:

“Don’t lazy-load images that are visible when the user first loads the
page, especially LCP images.” - Google

Their data shows pages with lazy-loaded LCP images have a median 75th per-
centile LCP of 3,546ms vs 2,922ms for pages without. That’s about a 20%
penalty.

In practice, I find that you can modify image_tag to always use lazy, and then
use a special hero_image_tag helper that overrides the lazy attribute:

Rails.application.config.action_view.image_tag_options = { loading: "lazy" }

def hero_image_tag(source, options = {})
image_tag(source, options.merge(loading: "eager", fetchpriority: "high"))

end

Variant LCP (ms) FCP (ms) TBT (ms) LCP Change
base 2536 2536 9.5 –
lazy-loading 1894 1894 0 -642ms (-25%)

Stop downloading the desktop hero on mobile (and vice versa)

Currently, you just have the mobile hero embedded as an img tag, like so:

Images, by default, load whether or not they are visible. So, you end up down-
loading the mobile hero on both desktop and mobile, and vice versa for the
desktop hero.

In 2025, you can use the picture and source elements. This will combine really
nicely with Cloudflare’s transformations as well.

<picture>
<source

media="(max-width: 767px)"
srcset="https://imagedelivery.net/.../hero-mobile/w=450,format=auto">

<source
media="(min-width: 768px)"
srcset="https://imagedelivery.net/.../hero-desktop/w=1200,format=auto">

<img
alt="A picture of woman with dog"

7

https://web.dev/articles/lcp-lazy-loading
https://web.dev/articles/lcp-lazy-loading

src="https://imagedelivery.net/.../hero-desktop/w=1200,format=auto"
fetchpriority="high">

</picture>

Reduce 3rd-party JS

ADR makes 27 requests to 16 separate domains for third-party Javascript. We
already discussed that Optimizely is, by far, the most important for LCP out of
all of these. However, the easiest thing to do is to remove unused 3rd-party de-
pendencies, so I just want to take a moment here to inventory all the Javascript
on the homepage and make sure it’s all still at least used in theory:

Script Domain Purpose
bat.js (x4) bat.bing.com Bing Ads conversion tracking
link-initialize.js cdn.optimizely.com Optimizely A/B testing
heap_config.js, heap.js cdn.us.heap-api.com Heap analytics
fbevents.js connect.facebook.net Facebook Pixel
(signals/config) connect.facebook.net Facebook Pixel config
retreaver.min.js dist.routingapi.com Retreaver call tracking
fs.js edge.fullstory.com FullStory session recording
pagead* googleads.g.doubleclick.net Google Ads conversion
modules.ce37dfc81afa6fcb.js script.hotjar.com Hotjar heatmaps/recordings
legacy.js seal-chicago.bbb.org BBB seal
(beacon.min.js) static.cloudflareinsights.com Cloudflare Web Analytics
hotjar-1347812.js static.hotjar.com Hotjar loader
main.js (x2) widget.trustpilot.com Trustpilot reviews widget
tp.widget.bootstrap.min.js widget.trustpilot.com Trustpilot bootstrap
datadog-rum.js http://www.datadoghq-browser.com Datadog RUM
gtag/js http://www.googletagmanager.com Google Tag Manager
gtm.js http://www.googletagmanager.com Google Tag Manager

Let’s just delete anything not in active use.

Note that removing third-party JS beyond Optimizely had very little effect in
my testing:

Variant LCP (ms) FCP (ms) TBT (ms) LCP Change
base 2536 2536 9.5 –
no-optimizely 1953 1822 0 -583ms (-23%)
no-third-party-js 1844 1013 0 -692ms (-27%)

Add purgecss

“Inline critical CSS” or “remove unused CSS”. I feel like everyone’s aware of this
one because, in theory, almost everyone could be doing slightly better on it, and

8

so Lighthouse loves to harp on you about it.

It’s just not that important for you. You have just 93kb (on the wire) of CSS.
Probably the most effective thing I’ve seen is to integrate PurgeCSS to just
remove unused CSS, but the potential impact of bugs here is high (unstyled
elements) and the payoff so low (see below).

Variant LCP (ms) FCP (ms) TBT (ms) LCP Change
base 2536 2536 9.5 –
critical-css 2546 2546 5 +10ms (0%)

Remove Heap.js to improve INP

This for URLs like /free-quote/ocp/aff/?/questionnaire/*

I noticed this in Datadog - you can simply look at all pages which have an INP
above 200ms and start looking at what was happening during their INP event.

What bubbled to the top was that a lot of the questionnaire pages had moder-
ately high (100-300ms) INPs. Not slow, but very frequent.

All of these pages have onsubmit handlers for the main form (e.g.: user clicks
“less than $20,000” on the debt-amount) step which are taking long amounts of
time (>200ms) and thus causing high INP.

INP measures the delay between a user interaction (click, tap, keypress) and the
browser painting the next frame showing visual feedback. When a user clicks a
form option, the browser must execute any attached JavaScript handlers before
it can update the screen. If your onsubmit handler takes 250ms to run, the user
sees nothing happen for 250ms—the button doesn’t change, no loading spinner
appears, the form just feels frozen.

The 200ms threshold exists because, according to Google at least, that’s roughly
the limit of what feels “instant” to humans. Beyond that, users perceive lag and
the experience feels sluggish.

This one was trivial to reproduce because you can repro it on the first step of the
funnel form. Just open up DevTools with the performance tab running when
you click the form element. You’ll need to use DevTools “CPU slowdown” mode
to simulate being on a low/midspec Android device rather than your $3000 Mac
M3 Max!

What I saw in the flamegraph was surprising: it’s all heap.js.

I’m skeptical that you can figure out a way to optimize exactly what heap is
doing here. First of all, it’s all minimized, so it’s pretty hard to follow. I would
say this is similar to your other 3rd party JS: are you actually using this feature
of Heap? Is it worth potentially getting a “yellow” score on your origin for INP?

9

https://matthaliski.com/blog/using-purgecss-with-rails

As far as I can see, this Heap analytics handler is the only INP issue on the
entire site.

Reduce Salesforce query count on GuidedEnrollmentsController

/guided/* is one of the slowest loading pages on ADR. For all pages which have
an LCP above 2.5 seconds, it has the second most-frequent number of slow loads.

The cause is simple - since almost every page has the exact same frontend
experience, the backend is what’s making the difference here. The GuidedEn-
rollmentsController takes ~1.25 seconds at p75 due to a high (~12-15) Salesforce
call count.

Reducing the call count here would reduce LCP for this unusually slow page.

10

	Recommendations
	Make the BBB logo non-render-blocking
	Disable Optimizely when not in use
	Reduce total image weight on homepage to 1MB
	For the homepage LCP image, set fetchpriority=high.
	Remove Set-Cookie from image responses to allow Cloudflare to cache images
	Lazy load all images except the hero
	Stop downloading the desktop hero on mobile (and vice versa)
	Reduce 3rd-party JS
	Add purgecss
	Remove Heap.js to improve INP
	Reduce Salesforce query count on GuidedEnrollmentsController

