
Hello Huntress team,

Thanks again for bringing me on to look at your setup. Overall, I think this is
an app that’s very healthy from a web latency standpoint, but shows room for
improvement as far as background job latency and overall provisioning. There
are big opportunities to improve both the overall cost of compute as well as
on-time performance for backgrounded work.

The load on the app overall is quite high. You’re doing around 20,000 requests
per second on web and 10,000 jobs per second on Sidekiq. However, the latency
on web in particular is quite low. Your p99 is something like 150ms, which
is easily 10-20x lower than most Rails apps I end up working with. That low
service time means you’re not drowning under a ton of concurrent requests.

Background job performance is a bit rougher. You have about 40 queues in
the app, but monitors on only 15. Queue latencies can vary across a week, and
SLA queues are exceeding their latencies on a regular basis. As an example,
biz_platform_sla_30s saw 2 minute latencies ~3 times in the past 7 days.

In addition, you are provisioning substantial amounts of compute for both web
and background. Background jobs hover around 4-5k processes per day. We
could make several changes which might make substantial dents in this number
(or at least in the resources required for each process).

I view retainer engagements as a long-term focus on a particular set of metrics.
I said I would propose a set of metrics to be our yardsticks for this effort. Here
they are:

• Reduce production node count by 100 nodes. You’re currently sitting
around ~300 c6g.8xlarge nodes most of the time. I don’t know how
you pay for these, but those are $9,500 each on-demand, so if this was
all on-demand sticker price we’d be talking about a ~$950,000 per year
reduction.

• Attain a 99.9% SLO uptime on all background job queues. I measure this
via monitor uptime, so put another way: “what % of the time are our
sidekiq latency monitors green?”

• Attain a 99.9% SLO uptime on web request queue time. Same thing but
for request queue time on the web side.

These three goals would all represent big steps forward for you operationally.

Reduce node count by 100 nodes
Recommendation: Move the fleet from c6g.8xlarge to c8g.8xlarge

The c6g.8xlarge has 32 vCPU and 64GB of RAM. The on-demand sticker price
is $9,500 annually. It’s from the 2nd generation of Graviton CPUs, released 5
years ago in early 2020.

1

https://app.datadoghq.com/dashboard/nar-8qj-2gp/sidekiq?fromUser=false&refresh_mode=sliding&from_ts=1765062298775&to_ts=1765235098775&live=true
https://app.datadoghq.com/dashboard/nar-8qj-2gp/sidekiq?fromUser=false&refresh_mode=paused&from_ts=1765062387236&to_ts=1765235187236&live=false&tile_focus=1490180212434888

I’ve always known that older instance types were slower. Single-thread CPU
speeds improve every year. But how much?

Ruby core actually maintains a set of standard Ruby benchmarks, which is
intended to monitor Ruby perf (particularly for YJIT). Most of these are
highly CPU-focused, but several are full-up Rails responses, like the discourse,
railsbench, and shipit benchmarks.

Since we live on the brave new frontier of 2025, I vibe-coded up a benchmark
runner that runs rubybench across several different instance types.

You can view the results online here. The overall differences are pretty stark:

Overall results are that c6g is ~3x slower than the fastest available instance type

I think these results are a good guide to what is possible, but I’m not 100%
confident they will replicate exactly in production. That is to say, I don’t think
switching from c6g instances to c8a instances will improve your response times
by 2.5x. I do think they show a substantial improvement is possible.

That means that if we can reduce service times of Sidekiq jobs and web responses
in half, we’ll see a corresponding drop in CPU use (and therefore be able to
provision fewer of them), mediated by the portion of our workload which actually
uses CPU.

If we put these all in a table, and consider the performance on the shipit
benchmark as our standard (it’s the most realistic/representative of a real Rails
response), we get the following:

API Name Shipit Benchmark vs baseline (x faster) On Demand (annual) Linux Spot Minimum cost (annual) Cost/Perf
c6g 1 $9,530.88 $3,518.02 $9530.88
c7g 1.02 $10,161.60 $3,643.28 $9962.35
c8g 1.92 $11,179.16 $3,744.02 $5822.48
c7i 2.08 $12,509.20 $5,145.62 $6014.04
c8i 2.45 $13,134.39 $6,704.03 $5360.98
c7a 2.85 $14,386.02 $6,011.99 $5047.73
c8a 3.37 $15,105.04 $6,661.98 $4482.21

Probably one of the main reasons to distrust this benchmark is that the database
and the Rails instance are run on the same instance, which means performance
increases get overstated as the database and the app are getting faster at the
same time, unlike your prod setup. However, I think the difference between c6g
and c7g and the other instances is undeniable.

I think that changing to c8g.8xlarge could result in needing ~25%
fewer nodes as response times and job execution times decrease.

I know you’re moving to Azure soon, however I include the AWS here because:

2

https://github.com/ruby/ruby-bench/tree/main/benchmarks
https://github.com/speedshop/rubybencher
https://github.com/speedshop/rubybencher
https://speedshop.co/rubybench

1. We could be talking about ~five digits per month of savings if this all pans
out.

2. You are using k8s… so instance types are cattle and not snowflakes, right?
Should just be a flip of a switch, right?

3. These transitions always take longer than people think.

I am working on an Azure recommendation and will update you when
I have it. Azure is a lot harder to work with than AWS, so it’s taking me longer
to get the bench working than expected.

Recommendation: Change core requests on Sidekiq to 1

I noticed that the Sidekiq core requests are inconsistent across deployments.
Some are set to cpu: 750m, others to cpu: 2, etc.

There’s no good reason for a CPU request on an auto-scaled Ruby service to
be anything other than one core. The autoscaler is responsible for ensuring the
number of pods keeps CPU usage trending between 50-90%. We should never
see sustained CPU usage above one core per process because Ruby’s Global VM
Lock (GVL) effectively limits a single Ruby process to one CPU core at a time.

For production processes like Sidekiq or Puma, I don’t see any reason to pro-
vision requests above 1 (or 1000m). The limit could potentially be set higher.
There are edge cases where Ruby containers might use more than one core, such
as when untarring source code during CI. However, I can’t think of a production
scenario where something inside your Docker container would consistently use
more than one CPU core. There might be an argument for a higher limit, but
requests should be set to one.

Recommendation: Change core requests on Puma to 1 per worker

In production, you are currently running a resource configuration of:

resources:
limits:

cpu: 1500m
memory: 4G

requests:
cpu: 1500m
memory: 512M

Based on the memory usage here, that looks like it’s running just a single Puma
worker process per pod. I want to change that also as a separate recommenda-
tion, but I’ll just concentrate on the CPU allocation per worker here.

For the same reasons as I enumerated above re: Sidekiq, you should be setting
this to cpu: 1000m.

For Puma, there’s going to be a slight variation here where we should really
be setting this to 1000 per Puma process. Like I said, right now that’s one, so

3

it should just be set to a thousand. However, in the future when I tell you to
add more processes per pod, this number should be scaled in proportion to the
number of processes. So as an example, my recommendation is gonna be to put
sixteen processes into a pod, so the CPU should say 16000.

Recommendation: Tune Sidekiq concurrency using GVL metrics

The vast majority of your Sidekiq queues are configured to run single-threaded.
I understand why. Big organizations typically start to prioritize thread safety
over cost. Notably, MDE, which is a quite a big queue that runs quite a lot of
pods, runs with three threads. Thus, it’s unclear to me what you really think
about the thread safety of your application.

However, I think it might be helpful to quantify what is really on the table here
in terms of possible throughput improvement and cost reduction.

Of course, this is going to be workload dependent. If a worker spends 50% of its
time waiting on I/O, even when it’s fully utilized (all processor threads are busy)
you will only use 50% of available CPU. What adding additional concurrency
does for us is really just allow us to more efficiently utilize a single CPU while
keeping memory usage also low.

So we have a couple of levers that we can pull to ensure that we’re fully utilizing
all the CPU that we’re allocating here: increase thread count in an attempt to
fully utilize a 1 core allocation, or decrease CPU allocation for each process.

When a workload does a lot of IO, like fifty percent of its time or more, tuning
Sidekiq to five to ten threads can improve throughput by fifty to a hundred
percent. So effectively doubling the amount of jobs per we can get out of the
same CPU. We can also do this, of course, by adding an additional process per
core, or in your case, more likely you would just decrease the CPU allocation
for each process to half of a core, 512 millicores.

However, the Sidekiq process with additional threads will probably increase
memory usage by twenty-five to thirty percent. However, doubling the number
of processes just doubles the amount of memory you’re going to use. This is
why we use threads at all to begin with: they are more memory efficient.

Approach Throughput Improvement Memory Impact
Increase threads (5-10) +100% +25-30%
Halve CPU per process (to 512m) +100% +100%

Since the introduction of Ruby 3.2, we actually have the ability to measure what
percent of a workload is IO or CPU blocked in production. We have a gem for
this that we’ve installed at a lot of other clients. The underlying instrumentation
here was written by Shopify and Ruby Core. And say when our Sidekiq jobs do
work, what percent of their time is spent waiting on IO. And that would allow

4

https://github.com/speedshop/gvl_metrics_middleware
https://github.com/speedshop/gvl_metrics_middleware

you to make an intelligent decision as to how many CPU cores per process you
would want to use, or how many threads you’d want to use.

So, my process recommendation for this is:

1. Change all Sidekiq CPU allocations to 1024 millicores (see other
recommendation).

2. Install gvl_metrics_middleware and determine IO % wait for each
worker type.

3. Decide if you will increase thread count or decrease CPU allocation. The
biggest factors here will probably be memory usage at the K8s fleet/node
level, because a fleet of 512cpu/2gb would be very different from a fleet of
1024cpu/2gb for example.

Here’s an overview of current concurrency/memory/cpu/queues:

Service Concurrency Memory (MB) CPU Units Queues
rio-sidekiq-arm 1 4098 1280 rio_windows_analysis, rio_analysis
rio-darwin-sidekiq-arm 1 4098 1280 rio_darwin_analysis
rio-linux-sidekiq-arm 1 4098 1280 rio_linux_analysis
rio-historical-sidekiq-arm 1 4098 1280 rio_historical
surveys-sidekiq-arm 1 4098 1024 fast_surveys, surveys
survey-deletions-sidekiq-arm 1 4098 1024 survey_deletions
general-sidekiq-arm 1 10240 768 mailer, high, low, default, org_unreference
signals-sidekiq-arm 1 10240 768 signals, signals_retry, signals_expedited, signals_triage, signals_noise, signals_hunting, signals_experimental
m365-sidekiq-arm 3 4096 768 m365
m365-fetch-sidekiq-arm 3 4096 768 m365_fetch, m365
m365-outbound-phishing-sidekiq-arm 3 4096 768 m365_outbound_phishing
m365-low-sidekiq-arm 3 4096 768 m365_low, m365
agent-health-sidekiq-arm 3 4096 768 agent_health
siem-sidekiq-arm 1 3072 (soft 2048) 1536 siem
siem-processing-sidekiq-arm 1 3072 (soft 2048) 1536 siem_processing
siem-powershell-sidekiq-arm 1 4096 1024 siem_powershell_scheduled, siem_powershell, siem_low
analysis-sidekiq-arm 1 4096 (soft 2048) 2048 analysis
mde-sidekiq-arm 3 4096 (soft 2048) 768 mde_alerts, mde_default, mde_low
business-sidekiq-arm 1 10240 768 biz_platform_30s, biz_platform_1h, biz_platform_24h

Recommendation: Memory Requests for Puma should be 1gb per
CPU, Sidekiq memory requests should be 2gb per 1 cpu, OOMKill
more aggressively for most deployments

Looking at container.memory.usage in Datadog for all portal* kube deploy-
ments, memory usage in the past week has been less than 2gb maximum (across
all pods!) on all deployments except sidekiq-general, which appears to have a
memory bloat issue (average is ~1.5GB but max is ~8gb). The average of all
deployments is far below 2gb.

5

For portal-web the averages are even lower (700mb), though maximums can also
temporarily explode to ~8gb+.

The big ratio I’m keeping in mind is that your fleet is provisioned for the c
series ratio of 1vcpu to 2gb of RAM. Deviating from that ratio either makes
binpacking really difficult or you end up having to provision lots of unnecessary
instances whose cpu or memory won’t be used.

Your restart counts are fairly low across the infra.

OOM kills by themselves aren’t great. However, it’s definitely hard to recom-
mend provisioning ~5x more instances than necessary to avoid them, as well.

The steps I recommend are:

1. For every worker type that hasn’t exceeded 2gb max in the past week,
set memory limit to 2gb. Set the request to 1gb for Sidekiq (seems to be
about your average) and 512mb for web.

2. For every worker type that has exceeded 2gb max in the past week,
let’s install and use sidekiq-memory_logger to get a handle of what job
classes exactly cause the increase, and quarantine those jobs into their
own sidekiq-high-memory worker class.

3. For web workloads, we’ll need to develop a similar tool to sidekiq-memory_logger
but for rack. It’s harder to “quarantine” web workloads so instead we’ll
have to fix any high-memory-use endpoints one by one.

That should all allow you to greatly reduce memory allocation and, finally, node
count.

Recommendation: Change Puma to 16 core containers on all web
services

From what I can tell from memory usage, it looks like WEB_CONCURRENCY
is set to 1 on all Puma pods. This is a classic SRE approach: “one process per
pod.” But this advice doesn’t apply well to pre-forking web servers, which is
Puma’s design.

The “one process per container” idea exists for clean process lifecycle manage-
ment. Kubernetes can monitor a single process directly, restart it on failure,
scale horizontally.

Puma is designed to work with a cluster of processes. A master process forks
multiple workers at startup. With the preload_app! config settings, the master
loads the entire Rails app into memory before forking. Copy-on-write (COW)
means the forked workers share that memory with the master until they write
to it. 16 Puma workers don’t use 16x the memory of one worker. They share
application code, gem code, and, critically, file descriptors (e.g. “port 3000”).

So, when using one process per pod, you’re already using far more memory per
process on average than you would otherwise. But, there’s another huge benefit!

6

https://github.com/speedshop/sidekiq-memory_logger

AWS ALB uses round-robin or least-connections across targets. It doesn’t know
if an individual Puma worker inside a container is busy. If you have 16 containers
with 1 worker each, the ALB picks a container and sends the request. If that
worker is stuck on a slow request, your new request waits in the socket queue.
It’s a “dumb” routing layer.

Puma in cluster mode handles this better. With 16 workers in a single container,
all 16 call accept() on the same listening socket. The kernel routes incoming
connections to whichever worker calls accept() first, which is always an idle
worker. Automatic, kernel-level load balancing based on actual availability.

Remember: queueing cannot occur unless all workers in a pod are busy. It’s
really just statistically less likely that all 16 workers will be busy, even if traffic
is 16x the one-process-per-pod case.

An M/M/n queue (n servers, one queue) has much lower wait times than n
separate M/M/1 queues at the same utilization. Separate queues let requests
pile up behind one slow server while others sit idle. A shared queue means no
server is idle while work is waiting.

Run 16 Puma workers in a single container instead of 16 single-worker containers.
You’ll get lower request queue times, better memory efficiency through COW,
and more consistent latency.

The tradeoff on the other side here (why not 32? why not 64?) is twofold:

1. Autoscaling quantum. We can only scale up/down in units of 1 pod. Some
of your web services are ~50 processes today, so making ~64 processes per
pod would be awkward to scale up or down.

2. Multicore does not scale linearly. 32 core machines do not have 2x the
multicore processing power of 16 core machines. This is primarily due
to memory bandwidth contention, cache coherency overhead, and NUMA
effects as cores compete for shared resources. In my experience, these
effects tend to get pretty bad over 32 cores.

Shopify currently uses 32 core pods, as a comparison point.

Recommendation: Use spot instances

This is, in my opinion, one of the biggest reasons to use a control plane like k8s
in the first place: to let you treat compute nodes as cattle, not snowflakes.

It seems like you’re close to supporting this, but didn’t follow through on the
effort?

Spot instances get a 2 minute termination warning. This is far, far longer than
most timeouts in your system which are already important:

1. stopTimeout on web is 120 seconds. You don’t currently have a
timeout set up at the Rack level, but you probably should, and if you did,

7

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-instance-termination-notices.html

it would be 30 seconds. However, you do currently have a timeout on the
ALB of 120 seconds, which is pretty close.

2. 115 second Sidekiq default shutdown timeout. Sidekiq’s default for
a shutdown is to wait 25 seconds for threads to complete their work, and
otherwise hard-kill them and put their work back on the queue. You’ve
configured that to 115 seconds.

And of course, your instances can be interrupted at any time today by a deploy.

Spot workloads have gotten a lot more expensive in the last 2 years or so (thanks
a bunch, AI), but they’re still considerably cheaper than on-demand. In my
opinion, the 2-minute shutdown also just ends up enforcing good devops practice
anyway: workloads should be idempotent and shut down promptly when asked.

I can’t really be sure what the cost cut here would be because it probably
depends greatly on your existing AWS Savings Plans.

Attain a 99.9% SLO uptime on all background job queues
Recommendation: Move to SLO queues everywhere

I see that you’ve started applying SLOs to a very small number of queues. That’s
great!

However, every queue should have an SLO in the name. This is because all
queues have implicit SLOs, even if they have never been written down anywhere.

Consider for any queue: what would happen if the queue latency on this queue
was suddenly 7 days? Work would sit in the queue for an entire week before
even being started. What would happen to the business? Would anyone notice?
Would customers complain?

If the answer to any of those questions is “that would be really bad”, this queue
has an SLO. You just haven’t written it down, and probably have no alerting
or monitoring to page the right people during an incident, and have no way to
review whether or not the provisioning is correct on a regular basis.

My general process recommendation here is:

1. Add an SLO suffix to every queue. siem becomes siem-sla-30s, etc.
Two special values are often used as well: a value denoting “instant” SLA
(web-like: near zero latency), and a value denoting “no” SLA, like a back-
fill queue. Probably for you that would be something like sla-0s and
sla-backfill.

2. Using terraform, create monitors and SLOs for every queue based on their
SLO.

3. Combine queues with the same SLA into the same worker type. Usually
it’s possible at this point to examine why we need separate queues at all
in the first place if the SLA is the same. Usually we start by combining
queues into the same Kubernetes deployment.

8

4. Combine queues in the same Kubernetes deployment into the same queue,
which is not subject specific (e.g. siem-sla-30s and mailers-sla-30s
become sla-30s).

SLO queues have a number of benefits:

1. Better utilization. Fewer queues and fewer worker types means maintain-
ing high utilization is a lot easier. It’s just easier to binpack load into
fewer worker types. There’s less idle time.

2. Alerting and monitoring thresholds are crystal clear. It’s right in the
name.

3. We can use SLOs to monitor our provisioning. Using an SLO on datadog
against our monitor, we can say things like “99% of the time in the last
month, this queue was within latency spec”. This brings data into the
decision about whether or not to change autoscaler settings, increase pod
minimums, etc, rather than just vibes.

4. Load shedding during incidents is easy. Queues with high SLOs (1 hour or
more) can be paused quickly by incident commanders without discussion.
It also makes it clear whether or not there needs to be remediation after the
incident (do we need to tell anyone/do any work? was the SLO violated?).

5. It’s a simpler developer experience. When a dev is writing a new job and
wondering what queue to put it in, they need only ask themselves one
question: how long can this job wait in the queue?

Recommendation: Sidekiq HPAs to queue latency rather than size

Your Sidekiq queue HPAs are currently set to scale on size rather than queue
latency.

When I think about autoscalers, I think about “what is our quality of service?”
What denotes the quality of the service that we’re providing? What metric, if it
grows unchecked, would result in a worse quality of service for our customers?

Frequently with autoscalers, we end up playing the drunk under the streetlight,
and end up autoscaling based on a 2nd or 3rd order metric that’s immediately
available, rather than a metric that we don’t have.

What we really care about is latency. If your Sidekiq jobs suddenly spent twice
as long in the queue, or if your web responses suddenly took twice as long,
customers would notice.

My plan would be:

1. Install yabeda-sidekiq and report queue latency to AWS and Datadog
(via yabeda-datadog and yabeda-cloudwatch).

2. Change HPAs to scale off this queue latency metric.

9

https://en.wikipedia.org/wiki/Streetlight_effect
https://github.com/yabeda-rb/yabeda-sidekiq

Attain a 99.9% SLO uptime on web request queue time
Recommendation: Reduce Puma worker count through latency based
autoscaling

Your Puma worker counts currently mostly sit on the minimum of the HPA.
Those minimums are pretty high.

Since your current autoscaler behavior is set to requests per target, you don’t
really have any idea what the quality of service is. That means you can’t scale
down (or up, as the case may be, but I’m 99% certain you’re overprovisioned)
because you don’t really know what your quality of service is.

Just like the Sidekiq situation, we have to:

1. Report queue latency to Datadog and Cloudwatch with Yabeda.
2. Use it as the basis of the HPA.

Reporting queue latency with Rack usually works like this:

1. Your k8s ingress controller needs to stamp each incoming request with a
header X-Request-Start that contains the milliseconds since the UNIX
epoch.

2. You have a Rack middleware that takes “Time.now - X-Request-Start”
and reports that difference as queue latency.

It seems like there is not a reverse proxy or nginx ingress controller in your
current setup. We will need to add something like that, as ALB cannot add the
necessary header. Azure can’t either, as the time is not one of the variables you
can use when rewriting headers.

Recommendation: Datadog needs a request queue time metric, SLO

We’ll report this also via Yabeda. Yabeda, unfortunately, doesn’t have a rack-
based middleware for reporting request queue time, but it would be trivial (10
lines) to implement our own.

Once that’s reported, we should do the same thing we do for Sidekiq queues:

1. Create a monitor (I suggest tracking p95 of queue time, alerting if it goes
over 100ms)

2. Create an SLO for the monitor (I usually just suggest 99.9% if you don’t
have any other strong feelings about your service levels).

10

https://learn.microsoft.com/en-us/azure/application-gateway/rewrite-http-headers-url#server-variables
https://learn.microsoft.com/en-us/azure/application-gateway/rewrite-http-headers-url#server-variables

	Reduce node count by 100 nodes
	Recommendation: Move the fleet from c6g.8xlarge to c8g.8xlarge
	Recommendation: Change core requests on Sidekiq to 1
	Recommendation: Change core requests on Puma to 1 per worker
	Recommendation: Tune Sidekiq concurrency using GVL metrics
	Recommendation: Memory Requests for Puma should be 1gb per CPU, Sidekiq memory requests should be 2gb per 1 cpu, OOMKill more aggressively for most deployments
	Recommendation: Change Puma to 16 core containers on all web services
	Recommendation: Use spot instances

	Attain a 99.9% SLO uptime on all background job queues
	Recommendation: Move to SLO queues everywhere
	Recommendation: Sidekiq HPAs to queue latency rather than size

	Attain a 99.9% SLO uptime on web request queue time
	Recommendation: Reduce Puma worker count through latency based autoscaling
	Recommendation: Datadog needs a request queue time metric, SLO

