
Hey Recora,

Thanks so much again for bringing me on. Overall, I was impressed with the
quality of the work already done on this application. I thought the engineering
here has been done to a high standard. I was also happy to see that many of
the concepts I teach in my books and courses were already in active use: SLO
queues, using Ruby to sort/filter data instead of SQL, and more. In totality,
my report here represents a kind of “polish step” or “step up” from an already
high level of quality.

You mentioned to me that you would like to reduce the cost of your deployment,
so most of my recommendations here are in that vein. I also have some points
to make around overall “operational stability”, things that will improve the
day-to-day stability and scalability of the app.

For the retainer’s 6-month engagement, I like to work through the lens of: what
are some key things we track (as metrics) and improve over this 6 month period?
For you, I think those are the following:

1. Reduce total AWS cost by $120,000/year to $20,000/month or
less. Simple enough. As you said, this is currently around $30,000 USD
per month for the last 4 months. I think we can reduce this by 1/3.

2. Track SLOs for web request queue time and Sidekiq queues in
Cloudwatch, attaining 99.9% uptime. I’m very happy with how
you’re already tracking request queue time and queue latency. Usually
orgs of your size aren’t doing that. The next step up the maturity model
is to think about these latencies as SLOs. This will allow you to make
data-driven provisioning decisions (supporting the first key metric/goal)
and evaluate your own operational performance (did we do what we said
we were going to do?)

I’ve put my recommendations into these two categories.

Reduce AWS platform cost
Recommendation: Create a within_5_minutes_high_io queue for tonic

You have two jobs which both represent a high amount of time consumed for
tonic but also do a ton of I/O:

• ProcessWorkflowActionAIJob is basically a frontend for an OpenAI, so
no surprise, it takes 10-20 seconds to get responses back sometimes.

• Plugins::PluginRunner seems to make requests to stedi often, which
can sometimes take 5-20 seconds. This job isn’t nearly as much I/O as
the AI job, but it’s still significant (and makes up a significant portion of
time consumed). This appears to only be for a subset of the plugins, not
all.

As I write this, you’ve reported 5 days worth of work in the last 14 days to
Sentry for the within_5_minutes queue. You’ve done ~6.5 days of work in

1

https://en.wikipedia.org/wiki/Maturity_model

total over all queues during that time period. These two jobs represent about 3
days of work, or about 60% of the wall time of this queue, or about half of your
entire backend job load.

Both of these jobs spend a significant amount of time waiting on IO, but are
running on Sidekiq instances with RAILS_MAX_THREADS set to 5. Consider, as
an example, a Sidekiq process who picks up 5 ProcessWorkflowActionAIJobs
at the same time. It will then basically sit idle for 15 seconds while all those
requests complete. That’s not an efficient use of CPU resources.

Because these jobs are so high-IO and represent a huge proportion of your
workload, I think it’s worth creating a new queue for them specifically and a
new task type which will only consume this queue (similar to long_running).

That queue should be configured with RAILS_MAX_THREADS=25, which, in
my experience and in synthetic benchmarks we’ve done, maximizes throughput
for ~95%+ I/O wait workloads.

The approximate throughput increase can be calculated here using Amdahl’s
Law. Ruby can only wait for I/O in parallel, so the only parallelizable portion
of the workload is I/O wait. Let’s estimate the I/O wait percentage at 90%
across these two jobs.

Given that information, we can compare the before/after throughput of
RAILS_MAX_THREADS=5 and RAILS_MAX_THREADS=25.

Amdahl's Law: Speedup = 1 / ((1 - P) + P/N)

Where:
P = parallelizable portion (I/O wait) = 0.90
N = number of parallel threads

With 5 threads:
Speedup = 1 / ((1 - 0.90) + 0.90/5)

= 1 / (0.10 + 0.18)
= 1 / 0.28
= 3.57x (theoretical max speedup over single-threaded)

With 25 threads:
Speedup = 1 / ((1 - 0.90) + 0.90/25)

= 1 / (0.10 + 0.036)
= 1 / 0.136
= 7.35x (theoretical max speedup over single-threaded)

Relative improvement from 5 to 25 threads:
7.35 / 3.57 = 2.06x throughput increase

So that’s great! We’ll be able to run half the number of tasks (for this part of
the Sidekiq workload) we needed to before this change. That should be about a

2

25% reduction in the average task count for tonic.

Good catch: solve the slow query in Api::MailgunWebhooksController#consume_mailgun_webhook

I usually look at the last 14 days of data, so this one showed up but then I
realized you solved it.

This controller in care is, far and away, one of the most high-load endpoints on
Care. That’s despite it having ~100x less requests per second than many of the
other endpoints. It has one of the highest p95s (17 seconds or so) of the entire
app.

The root cause is a very slow query (Sentry calls it CARE-API-BD)

You solved this with 20251211000000_add_mailgun_id_index_to_member_communications.rb.
Good work!

It’s solved!

Recommendation: Parallelize the I/O and fix the N+1 in
Queries::Appointments::FetchAppointmentAvailability

This is a high-load controller in Care. Reducing the latency here would reduce
load on the service, letting us provision fewer tasks.

The average latency of this controller is ~2.5 seconds due to repeated serial
calls to acuityscheduling.com followed by an N+1 on the appointments table
directly after:

Repeated network calls followed by N+1

We’ll fix the N+1 by reproducing that in development and then adding a Proso-
pite test, then fixing the test.

For the I/O calls, I’d like to make those in parallel using an ad-hoc threadpool
with concurrent-ruby.

Today:
(start_date..end_date).collect do |date|
available_times = availability_on_date(

calendar_id: calendar_id,
appointment_type_id: appointment_type_id,
date: date

)
...

AI-written sketch of the future
futures = dates.map do |date|

Concurrent::Future.execute(executor: thread_pool) do
times = availability_on_date(

calendar_id: calendar_id,

3

https://recora-health.sentry.io/issues/6975107181/events/50d0aefe015746eda9078ad3e2381084/?project=4510128958537728&referrer=event-or-group-header

appointment_type_id: appointment_type_id,
date: date

)
[date, times] end

end

results = {}
futures.each do |future|

date, times = future.value!

if times.nil?
raise ::Acuity::SchedulingError,

"Empty available times found for Calendar ID: #{calendar_id}, " \
"Appointment Type ID: #{appointment_type_id}"

end

results[date] = times
end

results
end

private

def thread_pool
@thread_pool ||= Concurrent::FixedThreadPool.new(

5, # max concurrent Acuity requests
max_queue: 20,
fallback_policy: :caller_runs

)
end

end

Recommendation: move web tasks to 4 processes and 4 vCPU each

You currently have all web tasks set to 1 CPU and running Puma in single
mode.

The “one process per container” idea exists for clean process lifecycle manage-
ment. For example, Kubernetes can monitor a single process directly, restart it
on failure, scale horizontally.

Puma is designed to work with a cluster of processes. A master process forks
multiple workers at startup. With the preload_app! config settings, the master
loads the entire Rails app into memory before forking. Copy-on-write (COW)
means the forked workers share that memory with the master until they write
to it. 16 Puma workers don’t use 16x the memory of one worker. They share

4

application code, gem code, and, critically, file descriptors (e.g. “port 3000”).

So, when using one process per task, you’re already using far more memory per
process on average than you would otherwise.

But, there’s another huge benefit!

AWS ALB uses round-robin or least-connections across targets. It doesn’t know
if an individual Puma worker inside a container is busy. If you have 16 containers
with 1 worker each, the ALB picks a container and sends the request. If that
worker is stuck on a slow request, your new request waits in the socket queue.
It’s a “dumb” routing layer.

Puma in cluster mode handles this better. With 16 workers in a single container,
all 16 call accept() on the same listening socket. The kernel routes incoming
connections to whichever worker calls accept() first, which is always an idle
worker. Automatic, kernel-level load balancing based on actual availability.

Remember: queueing cannot occur unless all workers in a pod are busy. It’s
really just statistically less likely that all 16 workers will be busy, even if traffic
is 16x the one-process-per-pod case.

An M/M/n queue (n servers, one queue) has much lower wait times than n
separate M/M/1 queues at the same utilization. Separate queues let requests
pile up behind one slow server while others sit idle. A shared queue means no
server is idle while work is waiting.

My recommendation is that you run 4 Puma workers in a single container in-
stead of 4 single-worker containers. You’ll get lower request queue times, better
memory efficiency through COW, and more consistent latency.

The tradeoff on the other side here (why not 32? why not 64?) is twofold:

1. Autoscaling quantum. We can only scale up/down in units of 1 task. Your
web services today seem to be in the 1-12 task range, so 4 represents a
reasonable compromise.

2. Multicore does not scale linearly. 32 core machines do not have 2x the
multicore processing power of 16 core machines. This is primarily due
to memory bandwidth contention, cache coherency overhead, and NUMA
effects as cores compete for shared resources. In my experience, these
effects tend to get pretty bad over 32 cores.

For low-traffic environments, you should scale this worker count down.
QA/test/staging can remain single process.

Recommendation: Don’t scale based on memory utilization

I noticed that care and tonic scale based on memory utilization. First of all,
that’s a good way to guarantee that you always end up spending 35% more
than absolutely necessary on memory cost, but secondly, scaling up based on

5

memory usage doesn’t make a lot of sense, because memory utilization shouldn’t
correlate with transactions per second.

Recommendation: Use one ECS task type each for 1 minute, 5
minute, and [within_5_minutes, within_24_hours] queues

You currently run all your SLO sidekiq queues through the same task type. This
is, however, creating an overprovisioning problem.

The average queue latency of your “loose” SLO queues (5 minutes and up) is
extremely low. This is not a good sign. We want the average time spent in the
queue to be roughly ~50% of the queue’s SLO (while maintaining good SLO
adherence!) so that utilization is maximized.

In order to meet your queue SLOs while maximizing utilization, I’d use three
different types of tasks in ECS:

• within_1_minute. The queue config for this can be within_1_minute,
within_5_minutes but it should only autoscale based on the
within_1_minute queue latency. This queue and task type will
primarily attain a 99% SLO through manual tuning of the minimum task
count, because you can’t autoscale fast enough to meet 1 minute SLOs.

• within_5_minutes. This queue config should only listen to
within_5_minutes and only autoscale if that queue latency exceeds 60
seconds.

• long_slo (or some other name), should listen to within_1_hour and
within_24_hours. This task type can scale to zero, and autoscale only
when queue latencies exceed 20 or 30 minutes.

Currently, you’re having to run this single task type at a high number of mini-
mum dynos in order to meet the SLO of the 1 minute queue, but your workloads
that don’t NEED that fast of a queue latency are executing far too quickly.
Longer time spent in the queue allows higher utilization.

Recommendation: long_running task type should scale to zero

This task type isn’t heavily used, and it’s SLO appears to be very loose. I would
consider allowing it to scale to zero and scaling up when queue latency exceeds
30 seconds (as it does today). This would effectively lengthen the possible SLO
of this queue to 30 seconds + ~5 minutes but it seems like the workload could
handle that?

Recommendation: Upgrade to PG 17

You’re currently on Postgres 15. Postgres major versions carry decent “free
speed”. I would consider upgrading to Postgres 17. Postgres 18 has native
UUIDv7 support (see later recommendations) but is not yet generally available
on AWS, so you could consider waiting until then.

6

Recommendation: Remove or greatly scale back (to .large) read repli-
cas

Read replicas are a pretty big luxury for this size of application. In general, I
am not a huge fan of read replicas for applications where the primary database
is not yet in the top ~2-3 largest RDS plans available. It is far easier (and
cheaper) to scale vertically than horizontally.

I can see these are used for analytics/ETL loads. Let’s reconsider if those loads
really do actually even generate a lot of load at all. Can they be moved to the
primary? Are they latency insensitive and can use smaller replicas?

Recommendation: Let’s work to downsize the Tonic db. Consider
installing pganalyze.

The Tonic db’s size and cost is significant. I have a few recommendations for
identifying and diagnosing database load.

• Fix database load caused by daily load peaks at 17->20 UTC.
This database is greatly overprovisioned EXCEPT at ~17:30 and 19:00
to 20:30 UTC. This definitely looks like background job load, because you
can see the IOPS and CPU load gradually increase as the autoscaler kicks
in. I’ll need more time to diagnose the jobs involved here, but if these
peaks were removed you could easily downsize this DB by half or more.

• Buy pganalyze. It’s incredible. Really great way to identify what in-
dexes you need, if your VACUUM settings are correct, and more. It’s my
preferred weapon. It’s a funny thing, but spending $150/month on ob-
servability can easily lead to saving $1,000 a month on provisioning costs!
Gotta spend money to make money.

• Use Rails query logs. The new Rails query log feature appends com-
ments to every query telling you where it came from. Combine this with
the two points above and you easily can figure out where specific queries
which generate load are coming from.

Recommendation: Change ElastiCache sizes, save $400-500 per
month

Care is on r5.large and tonic is on r7g.xlarge. You’ve got a lot of misc small
redis instances on .small instances.

1. Move Care’s r5.large to an m5.large. You only exceeded 50% memory
usage on this instance type once in the past 6 months, and it doesn’t
look like any size instance would have saved you. This would save you
$100/month.

2. Move tonic’s r7g.xlarge to an r5.large. This would save you $200 a
month and you’d still have the same memory available. Yes, this is a
slower CPU instance type, but this is not a performance critical path for
you (certainly not worth $2400/year).

7

https://api.rubyonrails.org/classes/ActiveRecord/QueryLogs.html

3. Change all the .small instances to .micro. There’s about 11 of these, so
that would save you an additional ~$100-150 per month. While you’re in
there, you might as well standardize the other redis instances on t series
to t4g as well (currently t2 and t3). They cost the same on demand.

Recommendation: Transition to UUIDv7 keys

This is kind of a big one. I’ve seen numerous issues at past clients with UUIDv4
primary keys. That’s, obviously, your entire setup.

I frequently collaborate with Andrew Atkinson. His blog post on this exact
topic recently went to the top of Hacker News.

His big points are how it nukes IN performance:

1. Big IN lists cause performance problems because PostgreSQL treats the
values as constants without statistics. This leads to longer parse times,
higher memory usage, and the planner often mis-estimating cardinality—
resulting in sequential scans instead of index scans.

2. Active Record commonly generates this pattern through eager loading
methods like includes() and preload(). While these fix N+1 queries, they
produce a second query with an IN clause that can grow to hundreds or
thousands of values as data scales. Using eager_load instead produces a
LEFT OUTER JOIN, which gives the planner statistics from both tables.

I think the most realistic path forward for you is to wait until Postgres 18 comes
out in ~Q1 and transition to UUIDV7 for all new records at that time.

Recommendation: Change default Sidekiq thread counts to 10

You’re currently running Sidekiq with 5 threads each, which is the default these
days. However, I still believe in the old default of 10 for most apps. Mike
mostly changed the default to 5 as a result of database pool size issues and
misconfigurations. You’re setting those correctly already so that doesn’t apply
to you. For the optimal throughput-per-process, I think 10 is still best (see
point above about Amdahl’s Law).

Improve operational stability
Recommendation: Remove the default queue entirely

ActionMailer still uses the default queue, as does Sidekiq::Batch::Callback
and a few random jobs like Sidekiq/CareProviders::AcuityConfigurationDriftScannerJob
and Sidekiq/CareProviders::CheckForProviderAcuityConfigDriftJob.

For me, an “SLO queue transition” should be total, and encompass all jobs. For
as long as “default” exists, there are jobs in the system whose SLO is unclear.
My goal would be to move all these jobs to an SLO queue and to remove default
from being “listened” to/consumed by any process in production.

8

https://andyatkinson.com/big-problems-big-in-clauses-postgresql-ruby-on-rails
https://andyatkinson.com/big-problems-big-in-clauses-postgresql-ruby-on-rails

You’ll have a few steps on the way to making that happen:

1. config.action_mailer.deliver_later_queue_name should be set to an
SLO queue.

2. application_job.rb should have queue_as: :some_slo_queue.
3. The Sidekiq batch callback queue should be changed: Sidekiq::Batch.callback_queue

= "my_custom_queue"

Recommendation: Change the within_1_minute queue to
within_1_second

In my view, almost every application has background work that they want to
get done “ASAP”. That work exists. A good example is a password reset email.
Password reset emails are actively blocking a real, human user, until they are
sent. So, we want to send them “as soon as possible”.

This kind of “customer blocking” work exists in most app’s background jobs
somewhere.

There is a big difference between “I will begin this background job within 1
second 99% of the time” and “I will begin this background job within 1 minute
99% of the time” from a customer’s perspective.

However, there’s not a huge difference between those two promises from a pro-
visioning perspective. Unless the load is very, very high, you probably need to
provision about as many servers/tasks to meet one SLO as you do the other. In
addition, both SLOs are so low/fast that they cannot be autoscaled effectively.

For those two reasons (within one second work exists, it’s not that hard to
provision for within one second SLO), I think you should rename your “lowest”
queue and provision to meet that SLO instead.

Recommendation: Monitor queue SLOs through Cloudwatch alarms

Your observability stack is AWS and Sentry. Sentry does not yet have arbitrary
metric support for Ruby, and even if they did I don’t think they’re gonna support
SLO tracking.

In AWS, we should have an alarm for each queue which goes off if the queue is
above it’s promised latency.

Then, you can sum the period the alarm was “going off” and multiply by 60
(60 second per period) to get how much time over a given period you were not
meeting your SLO. For example, over the last week:

aws cloudwatch get-metric-statistics \
--namespace AWS/CloudWatch \
--metric-name AlarmState \
--dimensions Name=AlarmName,Value=MyAlarmName Name=StateValue,Value=ALARM \
--statistics Sum \

9

--period 60 \
--start-time 2025-12-16T00:00:00Z \
--end-time 2025-12-23T00:00:00Z

Example: returns 3, e.g. 3 minutes of downtime over that 7 days.
There are 10080 minutes in a week
SLO performance was 10077/10080, or 99.9%.

With queue latencies, I use these kinds of SLO measurements as my “final”
yardstick. Most companies will want to be “within spec” 99% of the time or
better.

I review these about once a month to ensure my autoscale rules and task count
minimums are correct.

Recommendation: Move observability reporting to Yabeda

AWS observability is tricky because, as it seems you’re aware, the AWS cloud-
watch library is just making synchronous requests via HTTP to AWS whenever
you put a metric.

Recently I discovered Yabeda, a framework from Evil Martians for reporting
arbitrary observability data to arbitrary providers in Ruby.

I think we should move the following to Yabeda:

• HealthCheckJob for reporting QueueSize and QueueLatency.
• PumaStats for reporting Puma utilization
• Request queue time (not available yet in Yabeda but writing the plugin

here would take me a day maximum)

It would be a nice little upgrade on your current setup. The way you use
Thread.new currently makes me nervous - it could lead to increased memory
usage or instability if a lot of threads get created.

Recommendation: Use load shedding instead of autoscaling based on
RDS utilization

You have this rds_under_load variable in care_fargate_ecs.tf which im-
pacts scaling decisions, essentially stopping Sidekiq scaleout if RDS database
load exceeds a particular level.

This has a couple of issues with it:

1. There is usually some Sidekiq work which you want to execute no matter
what (even if the database is completely loaded up)

2. High-SLO queues can be “paused” even earlier than low-SLO (within 1
minute, etc) queues, but the current setup treats all queues equally.

I recently created activerecord-health, which is a gem which brings a metric
very similar to DBLoad into Ruby so you can observe and react to database load
from within your web responses or your background jobs.

10

https://evilmartians.com/chronicles/meet-yabeda-modular-framework-for-instrumenting-ruby-applications
https://github.com/speedshop/activerecord-health

This would allow us to do things like this:

config/initializers/sidekiq.rb
class DatabaseHealthMiddleware

def call(_worker, job, _queue)
if ActiveRecord::Health.load_pct >= 0.5 && queue == "within_24_hours" ||

ActiveRecord::Health.load_pct >= 0.7 && queue == "within_1_hour"
raise "Database unhealthy, try again later"

end
yield

end
end

Sidekiq.configure_server do |config|
config.server_middleware do |chain|

chain.add DatabaseHealthMiddleware
end

end

or other more sophisticated conditions.

11

	Reduce AWS platform cost
	Recommendation: Create a within_5_minutes_high_io queue for tonic
	Good catch: solve the slow query in Api::MailgunWebhooksController#consume_mailgun_webhook
	Recommendation: Parallelize the I/O and fix the N+1 in Queries::Appointments::FetchAppointmentAvailability
	Recommendation: move web tasks to 4 processes and 4 vCPU each
	Recommendation: Don't scale based on memory utilization
	Recommendation: Use one ECS task type each for 1 minute, 5 minute, and [within_5_minutes, within_24_hours] queues
	Recommendation: long_running task type should scale to zero
	Recommendation: Upgrade to PG 17
	Recommendation: Remove or greatly scale back (to .large) read replicas
	Recommendation: Let's work to downsize the Tonic db. Consider installing pganalyze.
	Recommendation: Change ElastiCache sizes, save $400-500 per month
	Recommendation: Transition to UUIDv7 keys
	Recommendation: Change default Sidekiq thread counts to 10

	Improve operational stability
	Recommendation: Remove the default queue entirely
	Recommendation: Change the within_1_minute queue to within_1_second
	Recommendation: Monitor queue SLOs through Cloudwatch alarms
	Recommendation: Move observability reporting to Yabeda
	Recommendation: Use load shedding instead of autoscaling based on RDS utilization

